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Abstract  

A deep understanding of the chemical composition of surfaces, interfaces or 

nanoscale structure with a high spatial resolution is an important goal in 

nanoscience and nanotechnology. Structural information can be collected using a 

variety of high spatial resolution techniques such as atomic force microscopy 

(AFM), scanning tunneling microscopy (STM), scanning electron microscopy 

(SEM), or transmission electron microscopy (TEM). Nevertheless, these methods 

do not offer molecular information such as vibrational spectroscopy techniques 

that allow one to collect molecular or lattice vibrations yielding to a precise 

picture of the molecular interactions in bulk materials as well as in surfaces and 

interfaces. Unfortunately optical spectroscopy techniques are limited in terms of 

spatial resolution and sensitivity due to the poor signal/noise ratio of the localized 

measurement. 

Surface- and tip-enhanced Raman spectroscopy (SERS and TERS) are 

advanced spectroscopic techniques, which are becoming widely used and show a 

great potential for the structural characterisation of biological systems. Surface-

enhanced spectroscopy (SERS) was developed to improve the sensitivity of the 

chemical measurements by using rough silver or gold surfaces. The challenge of 

the simultaneous improvement of the spatial resolution and sensitivity was 

addressed by combining high resolution optical microscopy with the high 

sensitivity of surface-enhanced spectroscopy and was termed tip-enhanced Raman 

spectroscopy (TERS). 

In this thesis, gap-mode TERS is developed for the study of a variety of 

materials. TERS is used in conjunction with gold nanoplates to serve as an 

ultraflat substrate that can possibly be functionalized. TERS investigation of 

monolayers adsorbed onto gold nanoplates such as alkoxy substituted azobenzene 

thiol and 4-nitrothiophenol is conducted. The monolayer is probed with a silver 
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coated AFM tip in order to obtain the largest electromagnetic field enhancement 

and the effect of the excitation (linearly or radially polarized) is conducted. TERS 

is also used to probe graphene flakes and differentiate the edges of a few-layer 

graphene flakes with a spatial resolution better than 20 nm. Last, TERS was used 

to investigate single DNA molecules deposited onto gold nanoplates. The DNA, 

cDNA and pure plasmid were investigated with TERS probing the distribution of 

nucleobases at a specific location with a spatial resolution which was, in the best 

conditions below 10 nm. 

 

Keywords 
 
Tip-enhanced Raman spectroscopy, atomic force microscopy, localized surface 

plasmon resonances, spatial resolution, surface specificity, detection sensitivity, 

enhancement factor, near-field measurements, radial and linear polarization, 

Gold (111) nanoplate, Azobenzene thiol, Self-assembled monolayer, Graphene 

flake, DNA chains. 
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Chapter 1  

1 General Introduction 

1.1 Overview of Raman Spectroscopy Applications  

First observation of elastic light scattering was reported by Lord Rayleigh in the 19th 

century and in the early 1920’s experimental measurements of inelastic light scattering of 

molecules in liquid phase was conducted by Chandrasekhara Raman.1,2 At the same time, 

L. Mandelstam and G. Landsberg observed the similar effects in crystals. 3 C.V. Raman 

was later awarded the Nobel Prize in physics in 1930. Despite of interesting features of 

the newly discovered Raman effect, the very weak signal of inelastic light scattering 

made the experiment difficult mainly due to the lack of powerful light sources and 

efficient detectors. The application of Raman scattering remained entirely restricted until 

the 1960s when the first laser was developed by T. Maiman enabling an intense source of 

monochromatic light. 

In parallel to the work of Raman, E.H. Synge proposed in 1928 to use the scattered 

light by a small particle illuminated from the back and scanned in vicinity of the sample 

as an excitation source for microscopy. This concept was  shared  with Albert Einstein 

who  acknowledged the interest of this idea, but he further highlighted that this method 

was fundamentally and practically  unusable.4 Later, Synge came with another idea of 

using sharp quartz tip as a light source or a small aperture and this time Einstein 

encouraged him to further investigate this direction.5  

In the 1980s, upon the invention of the scanning tunneling microscope (STM) and 

subsequent developments in ultra-high resolution positioning systems, Wessel proposed 
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to use the scattering from the small apex of an AFM tip to produce Raman scattering of 

molecules located in the vicinity of the nano-metric apex. 6 The local increase of the 

confined electromagnetic field in the vicinity of the tip would provide a spatially resolved 

signal originating from a nanometric object. In other words, excitation of surface 

plasmons of the metallic tip could be used to probe molecules and the STM tip would be 

used as an apertureless optical probe.  A decade later, the development of  scanning near-

field optical microscopy (SNOM) was mainly applied to map fluorescence and 

luminescence from surfaces with 50 nm spatial resolution.7 

  While the work was mainly pursued by the groups of Batchelder8,9 and Hallen10,11 

who developed SNOM-Raman imaging, Tsai et al. were able to measure for the first time 

near-field Raman signals.12 Further progress in advanced nanofabrication methods and 

developments of combinations of SNOM with resonance Raman scattering and surface-

enhanced Raman scattering (SERS) enabled applications of these techniques in biology, 

chemistry and other similar fields.13-15 In the early 2000s,  the groups of L. Novotny,16 R. 

Zenobi,17 M. Anderson,18 and S. Kawata19 published experimental results on a variety of 

nanomaterials using the so-called  tip-enhanced Raman scattering (TERS). 

1.2 Fields of Application of Tip-enhanced Spectroscopy: 
from Biology to Single Molecule Spectroscopy 

Many different experimental techniques such as mass-spectrometry, fluorescence, 

nuclear magnetic resonance (NMR), infrared and Raman spectroscopy are used to 

understand biological and chemical information along with interactions of 

macromolecules and small size-molecules. With these methods, isolated cell components 

like proteins can be investigated in great detail and even the identification and 
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classification of cells can be made, albeit  sample preparation like labelling or pre-

concentration are necessary and can be cumbersome for small quantities of a sample. 

Nanometer-scale materials developed over the past decade are of interest for a variety of 

applications but suffer from poor characterization such as the determination of 

crystallinity, the orientation of materials, the presence of active sites or defects in the 

nanoscale building blocks. Here, a critical parameter is the available spatial resolution of 

a given instrumentation to probe an isolated nano-object with a wealth of details. 

Overall, molecular analysis on the nanoscale size is becoming more essential because of 

advances and new challenges in materials and biomaterial research. Advanced tools to 

investigate the nanoscale domains that can provide molecular information are therefore 

critical. Ideally, such techniques must allow one to:  i) provide molecular fingerprints of 

molecules through the measurement of their vibrational spectra, ii) function without any 

need of labeling step and iii) provide spatial resolution with sub 10 nm resolution. 

Furthermore, the possibility to obtain simultaneously topographic and spectroscopic 

information is a valuable asset to correlate surface properties such as surface morphology 

with molecular information. Such methods such as scanning probe microscopy (e.g. 

AFM, STM), electron microscopy (EM), as well as super-resolution fluorescence 

microscopies including stochastic optical reconstruction microscopy (STORM), 

stimulated emission depletion (STED), and photo activated localization microscopy 

(PALM) can be used for study of nanoscale materials with high speed and sub 100 nm 

spatial resolution.20-25  However, these pure optical techniques based on the measurement 

of fluorescence require labeling that can influence the native response of the non-labeled 

material. 
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In this context, TERS resolution has been evaluated for characterizing a large variety of 

samples by several leading research groups. For instance, L. Novotny et al.30 

demonstrated investigation of one-dimensional structure single-walled carbon 

nanotubes using TERS as shown in Figure 1.1a. V. Deckert’s research group also showed 

that TERS is a powerful tool for characterizing of bio-molecules such as RNA strands 

(Figure 1.1b),26 various nucleobases,27 the lipids and protein domains of human cells,28 

viruses and malaria-infected cell which are presented in Figure 1.1d and Figure 1.1e.29 

R. Zenobi et al. studied the distribution of two very similar non-resonant thiols within a 

single monolayer on a gold film as shown in AFM images of Figure 1.1c.31 In a different 

study, in our group, we demonstrated that TERS can provide valuable information about 

the adsorption pattern of OPN (phospho-protein osteopontin) on calcium oxalate mono-

hydrate crystals without any need to label the protein (Figure 1.1f).33  
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Figure 1.1  Examples of recent TERS studies (a). Near-field Raman imaging of 

single-walled carbon nanotubes, The image is adapted from reference 30 with 

permission from Annual Reviews.30 (b) Topography of a single stranded RNA homo 

polymer of cytosine, The image is adapted from reference 26 with permission from 

The Royal Society of Chemistry.26 (c)  AFM tapping mode phase images of micro 

contact printed 2-mercaptopyridine (2-PySH) on a gold surface The image is 

adapted from reference 31 with permission from Beilstein-Institut.31 (d) AFM image 

of malaria-infected and non-infected cells (e) AFM image of the highlighted area in 

(d) showing hemozoin crystals inside the infected cell along with TERS spectra 

acquired with tip approached to or retracted from the cell surface. These images are 

adapted from reference 32 with permission from American Chemical Society.32 (f) 

TERS measurement of Osteopontin Adsorption to Calcium Oxalate Monohydrate 

Crystals. The image is adapted from reference 33 with permission from American 

Chemical Society.33 
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1.3 Scope of Thesis 

The present thesis is organized as follows: In Chapter 1, the theoretical background 

on Raman spectroscopy is first introduced. The principles of TERS and underlying 

plasmonic effect occurring in metallic nanomaterials are then developed. 

Experimental design and details associated with the TERS experiments developed in 

our laboratory are described in Chapter 2 providing technical details of the TERS setup 

and information on fabrication of the TERS probes. Importantly, this Chapter includes 

experimental details about the laser polarization consideration.  

In Chapter 3 of this thesis, the chemical synthesis of gold and silver nanoplates is 

detailed. The synthesis was performed in our group in order to achieve the fabrication of 

ultraflat substrates with a roughness lower than 0.5 nm. We showed in particular that gold 

can be used to produce flat and large triangular nanoplates. Chapter 4 is a published study 

that presents the results of a TERS study of self-assembled monolayer of thiolated 

molecules (azobenzene thiol and nitrobenzenethiol) on gold nanoplate using 532 nm 

excitation. The polarization state of the input light is set to linearly polarized (Gaussian–

transverse TEM00) or radially polarized and we report on the effect of the polarization on 

the collected Raman spectra. 

Chapter 5 is a published study that focuses on the TERS experiments conducted on 

graphene layers deposited on gold substrate and on glass substrate using red laser (632 

nm) excitation that is linearly (Gaussian–transverse TEM00) and radially polarized. The 

spectral position, width, and intensity of the G and D, 2D vibrational modes of graphene 
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are studied as a function of the incident light polarization and on the edges of the 

graphene sheet. 

In the last chapter, we demonstrated that TERS is a technique of choice for the 

characterization of a plasmid free β2AR cDNA along with its embedded cDNA in 

plasmid. This also provides us a lateral spatial resolution down to 8 nm obtained by 

TERS and is discussed in Chapter 6. This Chapter emphasizes that TERS technique 

provides not only a way to identify biological specimens with nanoscale resolution, but 

also an accurate localization of an ensemble of nucleic acids present on a selected region 

of the cDNA strand. 

We finally conclude by providing a critical view of the emerging fields where TERS 

can be of interest as well as the possible technical improvements yielding better 

reproducibility and better sensitivity of the TERS setup. 

1.4 Principles and Theory of Raman and Tip-enhanced 
Raman Spectroscopy 

1.4.1 Raman Spectroscopy  

Raman spectroscopy has been known for over 80 years as a powerful analytical 

method providing information about molecular vibrations fingerprint that can be used for 

sample identification and quantification. In most cases, it provides additional benefit over 

mid-IR and near-IR spectroscopy, such as minimal or no sample preparation, no 

interference from CO2 or H2O, and non-destructive analysis that is useful for many 

applications in art, archeology or forensic investigations.34,35  
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Indeed, a very wide selection of substances can be studied by Raman in either liquid, 

solid and gas states, sampling volumes can vary from µm3 to a few dm3 and the 

measurements can be done at distance ranging from nanometer dimensions to kilometers. 

However, the applicability of conventional Raman spectroscopy is limited by two main 

factors: one is the diffraction limit (Rayleigh criterion) that limits the spatial resolution of 

a given measurement to about λ/2 (λ being the wavelength of observation) and the other 

is the weak intensity of Raman signals. In nanoscience applications, this limited spatial 

resolution, makes the precise characterization of individual objects impossible in far-field 

conditions. 

When light is impinged on molecules in solid, liquid or gas states, photons can be 

directly absorbed or scattered. In infrared (IR) or ultraviolet-visible (UV-Vis) 

spectroscopy, we generally observe the absorption of photons by the molecules. The IR 

absorption results in the excitation of vibrational modes of the molecules, while the UV-

Vis absorption results in the excitation of an electronic transition which can be followed 

by either a non-radiative relaxation or a radiative emission such as fluorescence or 

phosphorescence.36 In addition to absorption, a small portion of the incident light is 

scattered by the molecules irradiated by the excitation light. Most of these scattered 

photons will be scattered elastically (Rayleigh scattering) which implies that their energy 

is equal to the energy of the incident photons. A small portion of the scattered photons 

(approximately 1 out of 108 photons) are however scattered inelastically with frequencies 

higher or lower compared to the frequency of the incident photons.36 Raman 

spectroscopy is indeed based on the detection of such inelastic scattering. In Raman, the 

molecular system is first promoted to a virtual energy state (with energies below the first 
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electronic transition but higher than a vibrational one) and then relaxes back to the 

ground state through scattering of photons with a higher or a lower energy compared to 

the excitation wavelength. This results in the anti-Stokes and Stokes scattering processes 

respectively. The anti-Stokes intensity is weaker than the Stokes because the anti-Stokes 

scattering happens from an excited energy state which, according to the Boltzmann 

distribution, is less populated than the ground state.36 (Figure 1.2) 

 

Figure 1.2 Energy level diagram for Raman scattering and IR. 

 

Raman spectroscopy is based on the detection of inelastic scattering of a small quantity of 

photons and therefore the intensity of Raman signal is weak. Besides, the observation of 

the Raman scattering can be limited by possible fluorescence which is typically 10 orders 

of magnitude stronger than the Raman scattering.  The masking of the Raman signal by 
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fluorescence arises specially in biological systems because of the presence of endogenous 

fluorophores. As a result, methods capable of enhancing the Raman signal are of 

tremendous interest, keeping modest irradiation energy and small integration time in 

performing Raman measurements of smaller and fainter molecular systems. 

1.4.2 Properties of Plasmons  

The irradiation of a metal surface with the proper wavelength of light induces the 

oscillation of the free electrons of the metal at the interface, which generates an EM wave 

and a charge motion termed as surface plasmon polariton (SPP).   

 

Figure 1.3 Schematic of surface plasmon polaritons at the interface between metal 

surface and a dielectric. 

Although observed in the early 20th century by Zenneck  (1907), Mie (1908) and 

Sommerfield (1909) such plasmon modes can be used for a variety of applications 

ranging from bio-sensing to metatronics37 and have fostered a recent and very active field 

of research referred as “plasmonics”. Metatronics aims at replacing electronic circuits by 

optical circuits that will accomplish all logical operations using the interaction of light 

with a nanostructured metallic surface, thereby enabling faster logical circuits. A variety 

of metals have shown to yield usable plasmonic properties for optical circuitry, sensing 

applications and spectroscopic purposes. Of those, gold and silver are of particular 
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interest since they have resonance in the visible range which makes them ideal for 

surface-enhanced Raman measurements. 

SP resonance is one of the prominent optical properties of metallic nanostructures and 

one of the best examples that highlights the peculiar interaction of light with nanoscale 

metallic materials. Nanoscale hot spots generated due to the SPs effect opens the 

possibility to enhance the signal of a molecule of interest located in the vicinity of a 

plasmonic nanostructure.38 As a result, SPs can be utilized to improve the detection in an 

extensive variety of fields including biomedical,39-41 energy,42-44 environment 

protection,45-47 sensing and information technology.38,48 

1.4.3 The Role of Localized Surface Plasmon Resonance in 
Raman Spectroscopy 

One of the recent developments in nanoscience is the control over the opto-

geometric parameters of nanomaterials in order to accurately tune their localized surface 

plasmon resonance (LSPR).  LSPRs are non-propagating excitations generated by a light 

which trapped within conduction electrons of metallic material with size of smaller than 

the wavelength of light. (Figure 1.4) 

  LSPR is a result of the interactions between conductive surface electrons and the 

incident light (like a laser source) which strongly depends on the, geometry, composition, 

dielectric environment, size and distance between adjacent nanoparticles.49,50 
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Figure 1.4 Schematic localized surface plasmon resonance (LSPR). Reprinted with 

permission from reference 51. 51 

The interaction between nanoparticles and light can be valued for a variety of 

applications such as photovoltaics, bio-imaging and laser photo thermal therapy.49,52,53 

The strong enhancement of electric field due to this effect in near-field is presently used 

for sub-wavelength resolution microscopic measurements as well as to increase the 

detection capabilities of spectroscopic methods such as surface-enhanced Raman 

spectroscopy (SERS), metal-enhanced fluorescence (MEF), plasmon resonance energy 

transfer (PRET),53 near-field lithography, nano photonics and also in single-molecule 

detection on a nanostructure.54,55 

1.4.4 Diffraction Limit in Optical Measurements  

Optical spectroscopy provides significant information on structure and dynamic 

properties of materials. Since the energies of light quanta (photons) lie in the energy 

range of electronic and vibrational transitions in matter, combining optical spectroscopy 

with microscopy is therefore desirable because spectral features can then be spatially 

resolved. However, the diffraction limit has restricted researchers from investigating 

features smaller than half a wavelength of the applied radiation. Two decades ago, it was 

demonstrated that near-field optical microscopy was able to expand the range of optical 

measurements beyond the diffraction limit.56 Although the accessible spatial resolution 



www.manaraa.com

13 

 

does not presently compare to related scanning-probe techniques (e.g., scanning-

tunneling microscopy), it is the combination of resolution and chemical information that 

makes near-field optical microscopy of great interest. (Figure 1.5) 

 

Figure 1.5 Comparison of diffraction-limited optical microscopy and near-field 

optical microscopy. (a) Diffraction-limited optical microsocopy; (b) Near-field 

optical microscopy 

As illustrated in Figure 1.5, the spatial resolution ∆x of a standard optical microscopy 

measurement can be described by the Abbe’s criterion (Eq. [1]): 

∆x = 0.61λ/N.A.  [1] 

Where, λ is the wavelength of the interacting radiation, and N.A. = n sin α is the 

numerical aperture (N.A.) of the objective lens. The N.A. can be enhanced by a large 

index of refraction n of the surrounding medium or a large angle of acceptance α.  

In near-field optical microscopy, the resolution ∆x no longer depends on λ but on a 

characteristic length d (e.g., aperture diameter or tip diameter) of a local probe. Near-field 
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optical microscopy depends on a confined photon flux between a local probe and the 

sample surface. In Synge’s original concept, the local probe including of a tiny aperture 

in an ideally reflecting metal screen.57 Directly behind the irradiated screen, the light field 

is spatially limited to the size of the aperture (d). If a scatterer is within a distance d from 

the aperture, it will interact with the radiation field. Synge’s concept was soon forgotten 

after its inception. This is due to the fact that the lack of nanofabrication techniques made 

it hard to follow. In the following decades, the idea was reinvented several times.  

1.4.5 Tip-enhanced Raman Spectroscopy 

Surface enhanced Raman scattering (SERS) is repeatedly used to improve the 

Raman signal intensity by 6 to 8 orders of magnitude.17,58,59  In SERS, the sample must be 

deposited as a thin layer onto a rough noble metal film, 60 a metal electrode, 61 or a 

colloidal solution of metal particles.62 Unfortunately, the SERS enhancement varies 

across the sample and depends critically on the substrate or colloidal solution preparation. 

This strongly limits its utility and quantitative measurements are very difficult to 

conduct.17 

With the aim to circumvent such limitations, it was proposed to surpass the 

diffraction limit using a confined electromagnetic field at the end of a metallic tip.63 As a 

result, the spectroscopic signal from vibrational modes of molecules located in the 

vicinity of the tip will be enhanced. TERS has been developed to acquire chemical 

information with very high spatial resolution,64-66 or chemical information from very few 

molecules, and in some cases even single molecules when combined with resonant 

conditions.67,68  Recently, single-molecule gap-mode TERS has been demonstrated by 

different groups separately. 67,69,70 Studies using TERS not only open the door for 
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nanoscale vibrational spectroscopy, but also could result in a better understanding of 

locally enhanced vibrational spectra from metallic surfaces.   

Since TERS combines the use of an atomic force microscope with a confocal 

microscope, large enhancements from nanoscale dimensions can be achieved yielding a 

high optical contrast with an improved spatial resolution better than 50 nm.71-73  Specific 

to metallic materials, the local field enhancement can be further increased in the range of 

102-105 depending on the sample and the setup.72,74,75 Likewise SERS, TERS is also a 

surface technique requires the immobilization of the molecules or nanostructure of 

interest to be deposited onto a surface. Many substrate types can be utilized such as rough 

or smooth substrates,76 single crystalline,77 metal,78 semiconductor,79,80 or an isolator.17 In 

other words, TERS enables the controlled generation of an enhanced Raman at a specific 

location defined by the tip spatial position. The tip can be scanned across the surface of 

the sample yielding a spatial lateral resolution that is only limited by size of the tip apex 

(10-50 nm). As expected from a near-field contribution, the TERS signal from the tip 

apex decrease drastically with increasing distance between sample and tip. Beyond 10-20 

nm, the TERS signal vanishes.81 

The goal of TERS microscopy is therefore to acquire the spectral response from 

molecules adsorbed onto nanostructures with an optical resolution beyond the diffraction 

limitation. For this purpose, a sharp metal tip is accurately positioned near the sample 

surface.30,82 The tip enables a channel through which the near-field components of the 

scattered light (evanescent waves) converts to propagated waves in the far-field zone that 

can be detected using conventional detectors. This implies that by using a confined 

source field with a large bandwidth of spatial frequencies, high spatial frequencies 
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produced from the sample are become available in the far-field, and the spatial resolution 

is only limited by  the diameter of the tip apex.83 

The scattered collected light consists of two spectra: the near-field spectrum originating 

from the tip apex and small sample region, the far-field background that was generated in 

the entire illuminated sample volume. In general, the two enhancement mechanisms 

accepted for SERS and TERS derive from (1) a mediated electromagnetic enhancement 

through the excitation of the localized surface plasmon and (2) a chemical enhancement 

due to the charge transfer in oriented molecules at a metal surface. (Figure1.6)  

(1) The matching of the input laser wavelength with the proper polarization with the 

LSPR of the metallic tip induces a coupled excitation of the electron if the metal causing 

surface-charge-density oscillations. Since the surface-charge oscillations are intimately 

coupled to electromagnetic fields, surface plasmons are polaritons which means the 

antenna locally improves the density of electromagnetic states, thereby increasing the 

modes into which the source can radiate and vice versa.26,51  

 (2) The other mechanism involved in signal enhancement is chemical enhancement, 

which primarily involves charge transfer mechanisms, where the excitation wavelength is 

resonant with the metal-molecule charge transfer electronic states. The chemical 

mechanism is thought to be an enhancement in polarizability caused by direct interaction 

between the adsorbed molecule and the metal surface. Perturbations to the electronic 

structure of the molecule upon adsorption and charge-transfer effects result in an increase 

in the Raman cross-section for the adsorbed molecule relative to the solution phase. In 

general, it appears that, the contribution to overall enhancement from chemical effects is 

quite modest in comparison to electromagnetic effects.26,51  
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Figure 1.6 Schematic representation of (a) the electromagnetic effect (EM) and (b) 

chemical enhancements effect (CE) in TERS (ωL: Excitation frequency, ωR: Raman 

scattering frequency). These images are adapted from reference 84 with permission 

from The Royal Society of Chemistry.84 

 

1.5 Summary 

The mechanism and basic principles of TERS were reviewed, highlighting the optical 

effects that occur nearby nanoscale metallic structures. The excitation of the localized 

surface plasmon can be utilized for a variety of applications including tip-enhanced 

Raman spectroscopy yielding enhanced spatial resolution of optical measurements. The 

TERS technique will be detailed from a more experimental and technical point of view in 

the following Chapter. 
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Chapter 2  

2  Experimental Design and Technical Aspects for Tip-
Enhanced Raman Spectroscopy 

This Chapter provides details of the experimental setup developed in the Lagugné-

Labarthet’s research group and associated optimal parameters to achieve high sensitivity 

and high spatial resolution in TERS experiments. Several challenges that prevent the 

widespread application of this technique are also discussed. In particular, the fabrication 

of efficient and reproducible TERS probes is indeed one of the most critical challenges 

that face most TERS users. The nanometer spatial resolution in TERS measurements is 

mainly limited by the size and the shape of the probe apex which is critical to control, 

thus requiring an optimized fabrication method. Moreover, the polarization of the 

incident light is an important parameter to yield large enhancement in TERS. When using 

transmission geometry, a radially polarized light source is particular interest to have a 

longitudinally polarized component oriented along the tip axis. This Chapter reviews the 

polarization control of the excitation light that has been integrated in our TERS setup.  

2.1 Technical Aspects 

2.1.1 Typical TERS Optical Configurations 

TERS setups are typically classified into transmission-mode and reflection-mode 

geometries as depicted in Figure 2.1. The setup of the transmission-mode TERS system 

usually utilizes an inverted microscope. (Figure 2.1a) The laser light is focused with a 

high numerical aperture (N.A.) objective on the tip apex and the back-scattered light is 

collected with the same objective. The transmission-mode has the advantage to have a 

single axis geometry where the propagation direction is along the tip axis. It is based on 
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the use of objectives with very high numerical apertures (typically 1.4) and short working 

distances yielding (typically 400 µm) very sharp focus at the focal plane. The 

transmission setup is however limited to transparent substrates.  

Another mode of TERS is the reflection-mode which is more suitable for non-transparent 

substrates. (Figure 2.1 b, c). Because of the side geometry, long working distance 

objectives and lower N.A. can be used yielding larger and non-symmetric spot size at the 

focal plane giving larger background signal and lower signal/noise ratio. Importantly, one 

challenge in TERS optical configuration is to produce the strongest electromagnetic field 

enhancement in the vicinity of the tip probe. For this, the polarization can be altered in 

such a way that optimized confinement of the electric field is obtained. 1,2 Briefly, the 

polarization vector must have a large component along the tip axis which is trivial to 

achieve in a reflection geometry but more complex with a transmission geometry. This 

aspect will be discussed in detail in the following section.  

 

Figure 2.1 TERS optical configurations (a) bottom illumination (b) top illumination (c) side 

illumination geometry 

Bottom Axial Illumination. In this setup (Figure 2.1a), the excitation light source is 

located below the transparent substrate authorizing the use of immersion objectives with 

numerical apertures as high as 1.4 that are either oil or water immersion.3-5 The TERS 
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signal is backscattered and collected by the same objective before spectral analysis and 

detection. This setup guarantees a high efficiency for light collection and the axial 

alignment of the tightly focused laser beam with the tip axis provides ideal configuration 

for alignment. The main limitation of this setup is the restriction to transparent samples 

and substrates. Thin substrates such as thin glass cover slips are generally used. Indium 

tin oxide (ITO),6 quartz7 or transparent gold plates8 are other alternatives as transparent 

substrates as long as their thicknesses are compatible with a given microscope objective. 

Top Axial Illumination. In the configuration with a top axial illumination, the 

microscope objective is on the same side of the AFM tip with a co-axial alignment. Such 

illumination geometry allows to work on both transparent and opaque samples.9,10 The 

coated tips used for this particular mode have a bent geometry with a large opening angle 

as depicted in Figure 2.1b to avoid shadowing effect from the cantilever of the tip. 

Objectives with large numerical objective can be used but a long working distance is 

necessary since the tip and the tip holder are positioned between the objective and the tip 

thus requiring a minimum space of several millimeters.  Consequently, the numerical 

aperture of the microscope objective must be selected to focus and collect the scattered 

photons around the tip as efficiently as possible. Typically, the numerical aperture of 

these reflection objectives is typically around 0.7.11-13 Furthermore, such illumination 

geometry permit us to work on both transparent and opaque samples. One of the biggest 

challenges in this geometry is due to the tip position located between the objective and 
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the objective and blocks a certain amount of light during illumination giving a lower 

Raman signal. 

Side Illumination. TERS instrument using side illumination setup has been presented as 

early as 2001 since they were based on commercial AFM that were not initially 

conceived to host a microscope objective in a transmission configuration. 14 In side 

illumination (Figure 2.1c), the laser is focused on the tip apex from the side and by using 

microscope objectives to dominate the limitation of bottom illumination approach sample 

transparency. A few different the side-illumination approaches using AFM and STM 

setups followed shortly after.15-20 In this geometry the tip is illuminated from the side by 

using microscope objectives with long working distance at an angle in 45-70° range 

relative to the tip axis.20 The polarization of the excitation light is p-polarized with a half-

wave plate in order to have a strong component along the tip axis. High laser power of 

several mW is usually used for side illumination because of the long working distance of 

the objective and its low numerical aperture limited to 0.3-0.6 N.A. The main advantage 

of this geometry is the ability to use on opaque samples. Despite a low numerical 

aperture, this configuration can yet yield strong enhancement in the gap between a 

metallic interface and the metallic TERS tip.21,22 

2.1.2 TERS Experimental Setup 

In the present thesis, the TERS setup is based on a commercial Raman 

spectrometer (600 gr/mm grating, HR LabRam, Horiba-Jobin-Yvon, Kyoto, Japan) 

connected to an inverted optical microscope (IX71, Olympus, Tokyo, Japan) and 

interfaced with a 5 axis atomic force microscope system (AFM, NanoWizard II 

Bioscience, JPK Instruments Inc., Berlin, Germany (Figure 2.2) to perform 
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measurements with a bottom illumination configuration and back-scattering collection 

geometry as shown in Figure 2.3. 

The AFM is equipped with a high resolution piezoelectric xy sample scanner as well as 

an independent xyz piezoelectric actuator to independently control the tip position and to 

hold the tip a few nanometers above the sample surface during TERS measurements. The 

Raman signal of the sample is filtered from Rayleigh scattering by using an edge filter 

located prior to the spectrometer. With regards to the detection system, a 0.8 m 

spectrometer equipped with a 600 gr/mm grating disperses the collected light spectrally 

prior to detection. The spectral resolution achieved with this spectrometer is typically 3-4 

cm-1. Alternatively, a 1800 gr/mm grating can be used to increase the spectral resolution 

and diffraction efficiency albeit the detected intensities will be lower. A liquid nitrogen-

cooled charge coupled device (CCD 1024x1600 pixels, Symphony Horiba) with close to 

single photon counting capacity and high efficiency in the visible range is used in this 

spectrometer. When 600 gr/mm grating is used, the obtained Raman spectra extends 

roughly over 1100 cm-1 spectral range in a single acquisition windows. 
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Figure 2.2 NanoWizard® 3 NanoOptics AFM system combined with a HORIBA Jobin Yvon 

Raman spectrometer for TERS 

 

Figure 2.3 Scheme of the TERS setup used in this thesis. The backscattered light from the sample is 

collected using the same microscope objective, passes through the notch filter to reject the Rayleigh 

scattering and is final entering the spectrometer entrance slit prior to spectral analysis and detection. 
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2.2 Factors Affecting Raman Tip-enhancement 

2.2.1 Fabrication of TERS Tips 

The major challenge in performing successful TERS is to fabricate efficient and 

reproducible TERS active probes. Two factors should be considered when TERS probes 

are designed. First, the required conditions to excite localized surface plasmon should be 

fulfilled by choosing the right metal for a given excitation wavelength. Second, the shape 

and size of the tip apex should be optimized to improve the accessible spatial 

resolution.23,24 The following sections discuss these issues in more detail. The selection of 

proper metal not only affects the excitation wavelength, but also the physical and 

chemical stability of the tip over time. Silver and gold are two suitable candidates for 

efficient enhancement on TERS experiment under visible light illumination. However, it 

should be noted that the dielectric functions of the two metals show significant difference 

in the UV-visible region under green (532 nm) and red (632.8 nm) excitation, 

respectfully.  Silver is known to provide stronger enhancement compared to gold but it is 

quickly oxidized in air and need to be used rapidly after coating or protected using 

additional coating. 25,26  Most AFM tips used in TERS system are often based on  

commercial Si or Si3N4 tips that are subsequently coated by sputtering or evaporation 

methods. Typical layer thicknesses of 3-5 nm for the adhesion layer and 20-30 nm for the 

metallic layer are deposited to ensure a homogeneously coated tip.  

2.2.2 Fabrication Methods 

We describe here two fabrication methods of AFM tips including electrochemical 

etching of a metallic wire and physical deposition of a thin metal film over commercial 



www.manaraa.com

30 

 

AFM tip.27,28 We mainly used in this thesis coated tip but we have explored 

electrochemical etching to fabricate gold tips. 

Electrochemical Etching. Electrochemical etching has been widely used to 

produce metallic probes for scanning force microscopy, in shear force microscopy and 

STM, or even to produce whole gold cantilevers for AFM.29 For TERS probe preparation, 

gold or silver wires are materials that are generally sharpened using electrochemical 

etching. To prepare gold tips, a voltage is applied between the gold wire (typically 100 

µm diameter) and a gold ring electrode that surrounds the wire, while both wire and the 

ring are immersed in concentrated hydrochloric acid and ethanol (1:1 V/V) electrolyte. In 

a procedure proposed by Ren et al.30 a gold ring of about 8 mm diameter made of 1 mm 

thickness gold wire is placed on the surface of the etchant solution in a way that ¾ height 

of the ring is immersed in the solution. Other than gold,31 platinum32,33 or carbon34 rings 

are also widely used in etching of gold wires. A gold wire of 0.25 mm thickness is then 

immersed in the center of the gold ring so that 2-3 mm of the wire is inside the etchant 

solution. Schematic of the etching reaction is presented in Figure 2.4. Upon applying the 

voltage, a large surface tension is formed between the ring and the gold wire which 

creates a meniscus on the surface35 as depicted in Figure 2.4. The etching proceeds more 

quickly within this meniscus region. During etching, a downward flow of AuClସ
ି occurs 

along the wire which results in a partial ion concentration gradient that decelerates the 

etching of the lower portion of the wire. This leads into the necking of the wire near the 

meniscus as shown in Figure 2.4.36  
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Figure 2.4 The schematic diagram of the etching process for fabricating the gold tips. The gold wire 

is immersed through a floating cathode ring into the etching solution of HCl and ethanol31. 

The mechanism of etching, which leads to dissolving of gold in concentrated HCl is 

shown in the following half-cell reactions: 

Anode: (3.1)           2Au + 8Cl-             2AuCl4
- + 6e- 

Cathode: (3.2)        6H3O++ 6e-             6H2O + 3H2 

Near the interface between the gold wire and the etching solution, the half reaction at the 

anode results in consumption of a large amount and the depletion of	Clି. Simultaneously, 

gold oxides will be formed on the wire, which passivates the gold surface and decreases 

the reaction current consequently. However, more	Clି migrates from the bulk solution 

towards the gold wire, which enforces the dissolution of gold oxide as AuClସ
ି. This would 

expose the bare gold surface to HCl and thus increases the reaction current. For this 

reason the reaction current shows periodic changes upon the etching process. As the 

etching proceeds, the gold wire becomes thinner at a position below the meniscus until it 

breaks and the lower part of the wire falls down. The voltage should be shut off at this 

point. Fabrication of ideal TERS tip requires that a proper voltage is applied to the 
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etching reaction. Proper voltage causes a stable reaction current oscillation and higher 

etching quality. Ren et al.30 proposed that a positive voltage above 1.4 V with respect to a 

standard calomel electrode should be applied. Nevertheless, higher voltages would 

accelerate the reaction rates and lead to formation of O2 and Cl2 side products. Gaseous 

species cause bubbling which roughens the surface of the tip. Addition of ethanol 

however, decreases the chance of bubbling34 because of the ethanol’s low surface tension 

(22.3 mN/m, for water this value is 71.9 mN/m) and results in formation of smoother 

gold surfaces.37 

For silver tips, two main etching methods are usually used. In the first method, the 0.25 

mm diameter silver wire is immersed by 6 mm in 10-35% aqueous ammonia electrolyte 

and a stainless steel plate is utilized as counter electrode. Etching reaction occurs when a 

current flows through the electrolyte. No metal rings are required in this method. Here the 

silver wire is manually removed with a 0.2 mm/min steps to form a cone on the body of 

the wire. After 10 min the removal is stopped and the etching continues until the lower 

part of the silver wire inside the etching solution drops. Tip apex radius of 50-100 nm can 

be achieved by this method.38 In the second method, 60% aqueous solution of perchloric 

acid and ethanol (1:2 V/V) mixture is used. The silver wire is immersed at the center of a 

silver ring that acts as cathode and as soon as a voltage of 1.5 V is applied the etching 

reaction would begin. The apex size in this method ranges from 50 to 100 nm.39 The 

electrochemical etching of the tips can be performed by using alternating (AC) or direct 

current (DC).30-33,40-43 When DC voltage is applied, the electrochemical potential gradient 

around the tip controls the etching process through controlling the ionic motion of the 

electrolyte. Under DC voltage, mass transfer from the vicinity of the tip is controlled by 
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convection and electrochemical potential gradient such as diffusion and migration.44 This 

process can however be haphazard and slow and therefore, sharpening of the tip may not 

necessarily occur in a clear and directional manner. On the contrary, under AC voltage a 

bubble will form during one half cycle which will be directionally forced upward by 

buoyancy. The etching rate is indeed controlled by the flow of this driving stream which 

removes the etched material from the vicinity of the tip. As opposed to normal etching 

where the bubble flow moves towards the tip shank, the flow moves away from the 

etched part of the tip which provides better conditions for formation of the tip. The 

presence of this bubbling flow has been evidenced through optical microscopy.45 

Nevertheless, when gold rings are used, AC voltages can be problematic due to the 

potential etching of the ring.34 SEM image of a gold tip fabricated through AC and DC 

electrochemical etching of gold nanowires done by Marion Bouchet, a former 

undergraduate student in our research group, is presented in Figure 2.5.  

The gold tip produced through applying 2.4 V AC voltage with 3 kHz frequency and 70 

µsec/impulsion pulse rates is shown in Figure 2.5a. The method however yielded low 

reproducibility. Electrochemical etching of a gold wires using 2.4 V DC voltage resulted 

in fabrication of gold tip similar to the one shown in Figure 2.5b with good 

reproducibility. (1:1 V/V) mixture of HCl (37%) and ethanol (96%) was utilized as the 

etching solution in these series of experiments. Although these first results obtained in 

our group are promising, the integration of such AFM tips in an existing AFM holder is 

not trivial. Because of their wire-geometry these tips are usually mounted onto tuning 

fork requiring a specific feedback mechanism to maintain the tip close to the sample 

surface with minimized noise. 
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Figure 2.5 SEM image of gold tip etched inside the etching solution of (1:1 V/V) HCl and ethanol 

using (a) AC and (b) DC voltage 

Metal Vapor Deposition. Using this approach, metal islands are created over a 

commercial AFM tip through thermal evaporation of the metal, which is induced by an 

electron beam inside a vacuum chamber.9 Metal islands are essential for creating a “hot-

spot” at the tip apex, which are necessary for TERS activity. Nevertheless, it has been 

shown that the presence of isolated metallic grain on the tip end may not guarantee the 

TERS activity and that a cluster of nanoparticles might be necessary.24 However, if the 

cluster is too large it would have negative effects on the resolution of the TERS 

measurements even though the tips are TERS active. As a result there should be a balance 

between the thickness of the evaporated metal and the effort to get metallic islands at the 

tip end. 30 nm thicknesses have repeatedly resulted in good yield of producing active 

probes with proper apex sizes of sub-50 nm.28,46-48 The deposition rate however should be 

experimentally tuned in accordance with the deposition conditions and more specifically 

the distance between the metal source and the tip inside the deposition chamber. This is 

due to the source temperature that can have a significant effect on the morphology and 

the quality of the resulting film through thermal annealing of the coating.  In this thesis, 
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electron beam vapor deposition was utilized to coat non-contact tapping mode AFM 

probes with gold or silver. The vapor deposition was done at the Western 

Nanofabrication Facility at Western University. The coating of the tips was conducted by 

electron beam induced thermal vapor deposition of around 5 nm titanium used as an 

adhesion layer followed by 30 nm of gold or silver inside a vacuum chamber. The 

deposition rate was set to 0.1 Å/sec to acquire a homogeneous layer of metallic grains. 

Figure 2.6 shows the SEM images of the resulting coated tips. 

 

Figure 2.6 SEM images of silver coated silicon tips (NCL tapping mode tips, Nano World TM. The 

coated layer includes 5 nm of titanium and 30 nm of silver. (a)- (b) present different magnification of 

the same image 

As shown in Figure 2.6 b, thermal vapor deposition provides a silver island at the tip 

apex when optimized deposition conditions are applied. The silver grain size at the tip 

apex has a diameter of around 30 nm. Typically one out of every five tips that got metal 

coated for the TERS measurements exhibited TERS activity. This yield is acceptable and 

comparable to the previously reported observations made by other research groups.24,49,50 
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2.2.3 TERS Tip Geometry 

Sharper apexes should experience larger charge density which should leads to 

larger local enhancement of the electric field. On the other hand, the size, shape and the 

roughness of the metal coating deposited over the tip are parameters that also strongly 

influence the enhancement of the electric field around the apex. Since in TERS the 

spectral measurements originate from the tip apex, smaller tip apex results in 

investigation of a smaller volume on the sample surface and therefore increased spatial 

resolution.21,51,52 The amount of defects and hence the sharpness of the apex could be 

controlled during the tip preparation  process only to some extent.53 This explains the low 

reproducibility of TERS active tips and variation of LSPR for the tips of similar 

dimensions that are prepared using similar procedures. This could be problematic since 

only stable plasmonic activity gives reliable and reproducible enhancement of the Raman 

scattering and consequently a well resolved chemical imaging.51 Two different tip 

geometries are used in the current thesis depending on the experimental requirement. The 

majority of the TERS measurements are conducted using tapping mode NCL50-silicon 

tips from Nano-worldTM (Figure 2.7a) or NSG-10 from NT-MDT (Figure 2.7b) 

Typically, the shape of these tips is a polygon based pyramid with height of 10-16 µm 

with  radius of curvature of 6-10 nm.  
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Figure 2.7 SEM images of (a) silicon NCL tapping mode AFM tip (b) NSG-10 

2.2.4 Lifetime of a Tip: Chemical and Mechanical Degradation  

Chemical degradations such as oxidation or adsorption of molecules or mechanical 

wear damages are two limiting factors of the lifetime of these probes. Chemical 

degradation is usually caused through reaction of ambient gases with the metal coating of 

the tip. For example, oxidation of silver with oxygen in the atmosphere typically lead to a 

decreasing of the enhancement within 24 h.54 Other option to overcome this problem is 

using gold tips, but there is a trade-off of fewer enhancements. Coating with thin 

protection layer has also been investigated using protection with functionalization of the 

tip with organic monolayer or through the deposition of a thin film of silica or aluminum 

oxide. 

 To avoid chemical degradations, all the coated tips (silver or gold) used in current thesis 

were used within 24 h of preparation. In addition, after removal of the coated tips from 

the deposition chamber, the tips were stored in desiccators that were purged with nitrogen 

to minimize contact with more reactive ambient gases. Mechanical wear damages are 

typically caused upon usage and result in removal of the metal coating from the tip 
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apex.55 Mechanical degradations can significantly alter the shape of the tip apex. An 

example is shown in Figure 2.8. 

 

Figure 2.8 Wearing off of the metal coating of a conventional silicon tip with (a) gold and (b) silver 

layer after the AFM-TERS experiment. The image (b) is obtained from reference 55 with permission 

from Review of Scientific Instruments.56 

The peeling of the metallic coat is usually due to the fact that the coating does not stick 

properly to the tip which results in the loss of sensitivity in TERS tip after conducting a 

few scans. Mechanical wear resistance of the tips could be enhanced upon coating with 

an additional thin layer of alumina or silicon oxide as reported in literature.57,58 To 

decrease the chance of mechanical damages in the current thesis, AFM scans were 

conducted using certain parameters which minimize the tip-sample interaction. The AFM 

scan prior to TERS measurements were performed with low scan rates (~ 0.3 Hz/line) 

and low driving forces. Since these settings typically have negative influence on the 

resolution of the acquired AFM scans, higher quality AFM images were in some cases 

collected after the TERS measurements were completed. Other tip degradation source 

arises from laser-induced heating which, can effect in shape and morphology of the 
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nanostructure that well known in the literature.56, 22  Overall, the TERS parameters must 

be adapted to the type of sample under investigation and spatial resolution may be 

affected by the type of sample as much as the type of tip used. 

2.2.5 Substrate and gap-mode TERS 

When using gap-mode TERS, the sample is sandwiched between two gold 

interfaces yielding better confinement and local enhancement in the order of 107. 59 This 

effect can only be observed if the tip-sample distance corresponds to the optical near-

field region, i.e. within 10-20 nm from the surface. 60-64 The ideal substrate for gap-mode 

TERS  must therefore be optically transparent, ultraflat and  can be used for chemical  

immobilization.65  

In this context, gold nanoplates have interesting optical properties, such as a plasmon 

mode that can couple with the localized surface plasmon of the tip upon proper 

excitation. Such plates initially used in combination with TERS experiment by the group 

of V. Deckert can be used as an ideal substrate for a variety of samples and 

applications.66-69 The main issue when using gold substrate is opaqueness and absorption 

of the incident excitation light. The chemical synthesis of the gold nanoplates reported in 

Chapter 3 provides ultraflat plates together with ultra-smooth roughness which is ideal 

for the TERS experiments described hereafter. 

2.3 Laser Polarization 

As stated earlier the polarization of the excitation source must be correctly set to 

provide local enhancement in the vicinity of the metal tip.  The magnitude  of field 

enhancement strongly depends on the polarization of the incident laser with respect to the 
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tip axis thus requiring a large component of the polarized light along the tip axis.70 In a 

transmission setup with bottom illumination, the polarization component along the tip 

axis when irradiated by a linearly polarized laser (Gaussian mode) is weak. Since the 

polarization of the incident beam is perpendicular to the tip axis (Figure 2.9a), the free 

electron of the metal are driven laterally with respect to the tip axis, providing no net 

confinement of the changes at the tip apex. One way to overcome this problem is to 

illuminate the tip with a linearly polarized beam coming from the side with a large 

incident angle. With such polarization configuration, the changes are driven axially and 

the results in a large accumulation of changes at the tip apex which in term provide a 

large field enhancement. 

 

Figure 2.9 (a) Interaction between a metalized tip and Gaussian transverse polarized mode creates 

no component along the tip axis (b) interaction between a metalized tip and radially polarized mode 

generates a field component along the tip axis 

In a transmission setup, it is possible to obtain a polarization component along the tip axis 

when using radially polarized beam. A radially polarized beam is a beam whose electric 

field vectors are radially polarized in the lateral plane perpendicular to the propagation 

vector. At the center of the beam there is no net intensity and the cross section appears as 
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a ring as shown in Figure 2.9b. When such “doughnut” mode is focused with a high N.A. 

objective, the radially polarized components recombine to yield a net polarization 

component along the propagation direction at the focal plane. When such polarized 

component interact with the metallic tip, at the excitation of the laser is confined at the 

extremity of the tip yielding ideal experimental conditions for the TERS experiments.71 

2.3.1  Experimental Setup to Generate Radial Polarization 

Several approaches have been used to generate a radially polarized mode. Quabis 

et al.72 used four segmented half waveplates to generate a radially polarized beam. Each 

of these four half waveplates are oriented in a way that their optical axis rotates the 

incoming electric field to the points in the radial direction. Saito et al.1 employed a radial 

waveplate composed by orienting eight segmented half-wave plates with optical axes in 

different directions in order to generate a radially polarized beam. These approaches 

however, suffer from the complexity of fabrication including the cutting and assembly of 

the wave plate segments. More importantly, the resulting wave plate is effective at a 

single wavelength which restricts the application of the setup. Recently a liquid crystal 

(LC) modulator was developed (ArcoptixTM, Switzerland) to generate a radially polarized 

beam that can be tuned for a wide range of wavelengths between 350 to 1700 nm. The 

general configuration of LC modulators is shown in Figure 2.10 LC modulators consist 

of a polarization convertor (θ-cell), a phase compensator that allows λ/2 phase step 

between the upper and the lower half of the θ-cell and a twisted nematic cell to rotate the 

entrance polarization by 90° and permit to switch between an azimuthally and radially 

polarized outputs. 
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Figure 2.10 Liquid crystal polarization modulator configuration. A linearly polarized light enters 

from the left sidet into the phase compensator. The electric field vectors might be rotated by the 

nematic cell and the light will exit with a radially or azimuthally polarization from the θ-cell. 

The top half of the phase compensator (black line across the phase compensator (retarder 

cell in Figure 2.10) has an electrode that permits changing of the inclination angle of its 

liquid crystal molecules, which changes its extraordinary refraction index. By applying a 

bias on the electrode the retardation is reduced compared to the bottom half where the 

retardance stays constant. As a result, the light phase in lower half of the compensator is 

different from the upper half by a λ/2 step. The function of the twisted nematic is also 

based on the precisely controlled alignment of liquid crystal molecules between different 

ordered molecular configurations under the action of operating voltages. When the 

nematic cell is switched off, light does not experience any polarization rotation. A 

switched-on nematic cell however, rotates the polarization by 90° angle.73 In a θ-cell, the 

entrance and the exit plates are linearly and circularly rubbed, respectively, and the cell 

axis is at the direction of the linearly rubbed entrance plate. A linearly polarized beam 

that enters the θ-cell has an electric field parallel or perpendicular to the cell axis. The 
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polarization conversion for each of the two inputs is summarized in Figure 2.11. Light 

with polarization perpendicular to the cell axis will be radially polarized when it exits the 

cell (Figure 2.11a).74 If the polarization of the input light is parallel to the cell axis, the 

output light will be azimuthally polarized (Figure 2.11b). 

 

Figure 2.11(a) Radially (b) Azimuthally polarized light generated by θ-cell. 

The experimental setup used in this thesis to generate radial and azimuthal polarization 

consists in the following elements. A liquid crystal convertor along with other optical 

elements such as mirrors, pinholes, lenses and optical spatial filters are utilized. An 

optical spatial filter is a combination of a microscope objective and a pinhole. The 

relative position of the objective and the pinhole should be optimized to create a 

homogeneous Gaussian and parallel beam. Any convergence or divergence of the laser 

beam must be corrected in the light path. A pair of converging and diverging lenses 

(convex and concave lenses) is utilized to downsize the beam diameter by a factor of two. 

Smaller beam cross sections are more easily matched with the entrance aperture of high 
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numerical aperture microscope objectives in TERS setup. Adjustable diaphragms are 

used to homogenize the beam by cutting out the interferences of back reflected light from 

the various optical elements. Additional lenses and pinholes might be necessary in order 

to adjust the size of the beam diameter before it enters the microscope. A CCD camera 

can be used to evaluate the quality of the laser beam during installation of the setup. An 

optical image of the radially polarized output of the above setup at the CCD camera and 

also at the focal point of a 1.4 N.A. oil immersion objective is presented in Figure 2.12. 

These images correspond to a radially polarized 632.8 nm red laser (Figure 2.12a and c) 

and 532 nm green laser (Figure 2.12b and d). 

 

Figure 2.12 Radially polarized (a) 632.8 nm laser projected at a CCD camera before reaching the 

microscope objective(b) 532 nm laser projected at a CCD camera before reaching the microscope 

objective(c) 632.8 nm laser focused by a x100 oil immersion objective with N.A.=1.4 (d) 532 nm laser 

focused by a x100 oil immersion objective with N.A.=1.4 

As shown in Figure 2.12c and d, a high numerical aperture microscope objective could 

decrease the beam diameter at focal point to around 1 μm. Imperfections in the shape of 
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the beam (more specifically in Figure 2.12d) are due to phase lags caused by the multiple 

optical elements located on the optical path. It is noteworthy that the middle part of the 

doughnut which appears black in Figure 2.12c (dark in Figure 2.12d) contains the z 

component of the polarization. Although the intensity of this component is less than the 

xy components (bright areas in same image), it would get magnified by several orders of 

magnitude once the TERS tip interacts with the center of this doughnut mode. 

2.4 TERS Experimental Procedure 

 To perform a TERS measurement, the sample should be deposited over a 

transparent substrate which also does not absorb significantly the Raman excitation laser 

used for the study. Thin glass or amorphous quartz cover slips are generally ideal for this 

purpose due to their compatibility with high numerical aperture oil immersion objectives. 

The sample should be deposited on the substrate in a way that it is facing upwards. This 

is the only way that the TERS tip approaching from above could sense the sample surface 

in bottom illumination TERS configuration. The TERS procedure will be described in 

detail in the following sections. 

2.4.1 Alignment of the TERS Tip to the Laser Focal Region 

 Prior to any TERS experiments, it is necessary to align the TERS tip with the 

focused laser spot. Consequently, it is essential to exactly determine the position of the 

tip apex on the cantilever in order to align it with respect to the focal point of a tightly 

focused excitation laser. The two approaches that can be used to perform such alignment 

are summarized in the following sections. 
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First, the scattered signal from the AFM tip can be detected by a photodiode showing that 

the extremity of the tip scatters largely the laser light (Figure 2.13). Second, the vertical 

deflection of an AFM tip from the focused laser can be monitored. The absorption of a 

tightly focused laser produce thermal fluctuations that can be sensed by an AFM tip 

scanning the focal region. (Figure 2.14a). Last, the Raman intensity map in Figure 2.14b 

is generated by integration of the Raman signals of the strong Silicon band of the non-

contact tip (Type NGS10, silicon tip). Even though the tip is coated with a 20 nm thick 

layer of gold, scattering of silicon is yet effective and can readily be detected. The 

preliminary alignement is first done with mechanical positioning of the AFM tip over the 

focal region. The precise alignment is then done using piezoelectric actuators that 

provides lateral positioning of the tip above the focal spot with sub-nanometer resolution. 

Once the alignment is done the position of the tip within the laser spot remains 

unchanged and only the sample, fixed to its own X,Y piezo stage, is moved 

independently. 

2.4.2  Tip Alignment by Rayleigh Scattering Collection  

In this method the TERS tip is scanned over the tightly focused Raman laser 

while it is in feedback with the sample surface. As the laser illuminates the tip it is back-

scattered from the tip apex. The back-scattered light gets collected by a photodiode which 

is connected to an input channel on the AFM controller box.75  This generates an image 

of the cantilever similar to what is shown in Figure 2.13. 
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Figure 2.13 Tip alignment based on the collection of the Rayleigh scattering from the cantilever. 

(a) and (b) are images of an area around the tip apex proximity recorded with different zoom 

In this figure, the tip apex position appears as a bright spot on the acquired image 

reflecting a higher scattering center. Smaller scan area and lower scan rate in general 

create images with better qualities where the tip apex position is estimated to be at the 

center of an area with 500 nm diameter. It is noteworthy that this bright area indicates the 

coupling of near-field scatterings into the far-field. Hence, similar spots might be 

detected simultaneously from other positions on the cantilever that should not be 

mistaken for the tip position. Since the tip is typically located in a symmetrical distance 

from the edges of the cantilever, the optical images of a larger area on the cantilever, 

similar to the image in Figure 2.13a, should help to discriminate other bright spots from 

the tip location. Meanwhile, if the tip position is not determined correctly and it is 

mistaken by a second bright spot on the Rayleigh scattering image, no TERS activity will 

be observed. 

2.4.3  Tip Alignment by Raman Spectra Collection 

  An alternative method for alignment of the tip with respect to the Raman laser is 

to collect the Raman spectra of the cantilever and the tip. In this method, the vertical 
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deflection image of the cantilever is first collected, which shows the overall shape of the 

cantilever as well as the approximate tip position (Figure 2.14a). Once the rough position 

of the tip is found, Raman spectra of an area on the cantilever around the tip position are 

collected. The collected Raman spectra are then used to generate a Raman map of the 

cantilever (Figure 2.14b). The creation of the map is done through integration of the area 

below a characteristic peak in the Raman spectrum of the cantilever. For example for 

silicon tips the intense peak at 520 cm-1, corresponding to the first optical phonon mode 

of silicon, is used. On this color coded map that indicates the variation of intensity of the 

520 cm-1 mode, the position of the apex appears as a most intense pixel.  

 

Figure 2.14 Tip alignment by Raman spectra collection (a) image of the cantilever generated by 

light reflection caused by vertical deflection of the tip upon interacting with the laser (b) Raman map 

generated by integrating the Raman intensity in the [515-525]cm-1 spectral range. The pixel with the 

larger intensity indicates the tip location (indicated by a dashed circle in (b)). 

This method is more time consuming compared to Rayleigh scattering alignment. It is 

noteworthy that during the alignment process, the position of the cantilever along the z 

direction also gets optimized. For this purpose the thickness of the sample must be taken 

into account. If the thickness of the sample is more than 50 nm, the alignment process 

could not be done on the substrate because the z position of the tip during the TERS 
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measurements on the sample surface would be different from the alignment process. For 

this reason, when working with thicker samples, tip alignment must be carried out on top 

of the sample surface. However, for thinner samples, doing the alignment on the sample 

surface or on the substrate should not cause a significant inaccuracy. Extra care should be 

taken to ensure that the cantilever position along the x and y direction doesn’t change 

during the experiment. For this reason, mechanical vibrations should be minimized in the 

room where the TERS measurements are being performed. 

2.5 Estimation of the Enhancement Factors in TERS  

Enhancement   factor   (EF)   estimation  can be determined from the TERS 

experiments and can be used to judge the local enhancement of the measurement for a 

given sample in a given geometry.76  This factor depends on multiple factors including 

the experimental conditions, sample properties and preparation and ultimately, the 

efficiency of the TERS tip. Such enhancement is not straightforward to estimate since it 

needs a reliable reference and non-enhanced spectrum of the same sample. Accordingly, 

in the TERS literature variation of the enhancement factor reported ranges between 30 to 

of 1013.77,78 To calculate the enhancement factor from a given measurement, two factors 

should be determined. On the one hand, the spectroscopic contrast C which is a 

comparison between the Raman peak intensities when the tip is in contact (in near-field 

of the sample) and the intensities when tip is retracted (in far-field of the sample). This 

contrast is provided by: [Eq.2]79 

ܥ                            ൌ
ூ೙೐ೌೝ	೑೔೐೗೏
ூ೑ೌೝ	೑೔೐೗೏

ൌ ூ೅ಶೃೄିூೝ೐೟ೝೌ೎೟೐೏
ூೝ೐೟ೝೌ೎೟೐೏

      [2] 
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The second factor is the geometry factor that is critical to evaluate the contributions of 

the far-field and near-field scattering volumes. Due to the relatively large dimensions of 

laser cross-section, even when high numerical objectives are used, the investigated area 

in far-field is much larger than the area that is illuminated by the tip in near-field. For this 

reason the difference between the illuminated volumes in near- and far- fields should be 

considered for the estimation of the experimental enhancement factor. In case of very thin 

samples the volume could be replaced with area of the illumination. The far-field 

scattering originate from the entire focal region of the laser therefore, Afar field =ݎ௟௔௦௘௥
ଶ ൈ   ߨ

with ݎ௟௔௦௘௥
ଶ being the radius of the laser cross-section. The area from where the near-field 

signal arises can be estimated as Anear field =ݎ௧௜௣
ଶ ൈ ௧௜௣ݎ with  ߨ

ଶ  being the radius of the tip.23 

By considering the source volume, the enhancement factor of TERS can be defined 

through the following equation: [Eq. 3] 

ாோௌ்ܨܧ ൌ ܥ
஺೑ೌೝ	೑೔೐೗೏
஺೙೐ೌೝ	೑೔೐೗೏

     [3] 

Nevertheless, for a reliable comparison of various experiments, the method used for 

calculation of the enhancement factor should be carefully considered. Since the Raman 

intensity varies with the scattering cross-section of the sample, this enhancement has to 

be considered with caution because it is sample dependent.16,80-82 

2.6 TERS Vibrational Assignment 

TERS peaks are commonly compared to conventional Raman bands; however, 

presence or absence of bands, variation of their intensities and shapes should be closely 

investigated. Due to the localized enhancement, TERS is a surface specific technique and 
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is therefore sensitive to the orientation of the Raman modes. Although the positions of 

the Raman bands are usually similar in TERS and conventional Raman, the intensity of 

the individual bands can vary significantly.83 

2.7 Conclusion  

In summary, tip-enhanced Raman spectroscopy (TERS) is a highly sensitive 

spectroscopic technique which combines the spatial resolution of scanning near-field 

techniques with the chemical specificity of vibrational spectroscopy which makes TERS 

a unique method to explore the nano-world. Considering its spatial resolution that 

surpasses the Abbe’s diffraction limit of λ/2, nanoscale objects with dimensions in the 

10-20 nm can be investigated with TERS. The magnitude and reproducibility of the 

enhancement, lateral resolution and the lifetime of the TERS tip are among the issues that 

remain problematic. A universal and inclusive application of the method suffers from the 

lack of reliable tip fabrication methods with the goal to increase the tip’s TERS activity 

and the yield of tip reproducibility. This low reproducibility restricts the direct 

comparison between the TERS studies that are performed in different research groups. 

Despite all the challenges, TERS has shown great potential for chemical imaging of the 

surfaces of a large variety of the samples. At present, there is no other option at 

nanometer scale study to provide molecular recognition through the analysis of their 

fingerprints.  TERS is very powerful technique that can provide information 

complementary to other surface specific tools such as SEM or XPS. The following 

Chapters report on selected examples of the applications of TERS in material and 

biomaterial research. 
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Chapter 3  

3 Synthesis of Metal Substrates 

3.1 Introduction 

Metallic nanoparticles, such as gold (Au) and silver (Ag), have been intensely 

studied in the past decade due to their unique optical and electronic properties that can be 

finely tuned by altering their shapes and sizes. Their possible applications in fields such 

as catalysis, photovoltaics, biomedical diagnostics and imaging,  and many other related 

fields, has fostered new synthetic approaches yielding a large variety of shape and sizes 

for these structures.1-9 For example, nanomaterials exhibiting absorption bands in the 

near-infrared region have shown potential use in cancer hyperthermia, biological assays, 

cell imaging, as well for higher efficiency solar cells.10-12 In order to tune the absorption 

band(s) in the desired spectral range, bottom-up and top-down fabrication methods can be 

used to tailor the optical and electronic properties of a variety of nanoscale materials. The 

opto-geometric parameters of nano-scale materials can therefore be optimized for a 

specific application.13-16 

The synthesis, characterization and application of spherical metal nanoparticles have 

been actively explored over the past few decades.17-19 Some examples of nanomaterials 

include nano-wires, prisms, cubes, plates, disks, and belts.20,21 Interestingly by changing 

the shape of these materials, new optical and electronic enhanced properties have been 

observed. For example, nanotriangles appear to be more proficient catalysts than 

nanoparticles or nanowires for the oxidation of small organic molecules.22 Nanotriangles 

or nanoplates are also interesting because of their intense plasmon resonance in the visible 

and the near-infrared regions which are sensitive to small geometric changes of the 
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substrate or its surrounding environment. Additionally, these nanotriangles show 

anisotropic electrical conductivity,23  a localized enhancement of electric field at the 

vertices,10 which makes them potential candidates for applications in photonics, optical 

sensing, imaging,  and surface enhanced spectroscopies.1,2  

Several synthetic methods have been reported to prepare gold and silver triangles and 

plates, including seed-mediated synthesis at room temperature,9,24 polymer-assisted 

synthesis,25 microwave heating,26-28 and thermal aqueous solution approach,29-31 yielding 

nanoscale structures with a variety of shapes and with a broad dispersion in size. The 

development of synthetic methods for the control of the shape and the size of 

nanomaterial with an excellent reproducibility and mono dispersity is currently a 

challenge. Since the physical properties of a given structure vary with its size and shape, 

it is therefore critical to have a very good control over the polydispersity of the desired 

material. This has been accomplished in very few instances using solution-chemistry 

routes based on adequate capping agents.32 

For  metallic nanoplates, the most widely proposed growth mechanism involves the 

confinement of metallic nanoparticles into a plate like morphology through surfactant 

capping (CTAB) or polymer adsorption (PVP) onto the (111) faces of the developing 

nanoplates.26,33-35 The possible effects of reaction temperature, kinetics, and byproduct 

formation are also considered.36,37 In this chapter, the synthesis of gold and silver 

nanoplates, ranging in dimensions from several tens of nanometers to a few microns will 

be discussed. In this thesis, the goal is to use such nanoplates as substrates for tip-

enhanced Raman spectroscopy. These substrates have generally a low roughness 

preventing any intrinsic surface-mediated enhancement and can be used for gap-mode 
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TERS where the nanoscale object or molecule of interest is sandwiched at the interface 

between the metallic plate and the AFM tip. In this chapter, we are therefore investigating 

the chemical synthesis of gold and silver plates that was conducted in our group. 

3.2 Synthesis of Gold and Silver Nanoplates 

In the following paragraphs we report on the synthesis and the characterization of 

both gold and silver nanoplates triangles using wet chemistry synthesis. The goal is to 

produce nanoplates with dimensions and surface quality that are compatible with TERS 

experiments. Flat surfaces with small rms roughness and dimensions in the range of 

several micrometers are desired. 

3.2.1 Chemicals, Materials, Mechanism of Synthesis 

Gold Nanoplates: hydrogen tetrachloroaurate(III) trihydrate, cetyltrimethylammonium 

bromide  (CTAB, ≥ 99%), aminopropyltrimethoxysilane (APTMS, 90%) and sodium 

citrate dehydrate (trisodium salt 99%) were purchased from Aldrich and used as received.  

Silver Nanoplates: silver nitrate, sodium borohydride, hydrogen peroxide (30 wt. %), 

ascorbic acid, acetonitrile and sodium citrate dehydrate (trisodium salt 99%) were 

purchased from Aldrich and used as received. 

3.2.2 Synthesis of Gold Nanoplates 

For the synthesis of hexagonal and triangular gold nanoplates with dimensions of a 

few micron, CTAB was used as a stabilizer.  12 mL of an aqueous solution containing 

8.33×10-4 M(7 mg) tri-sodium citrate was heated to 50 °C and stirred in a flask over an 

oil bath. Separately, a solution of 1.25×10-3 M HAuCl4 (4 mg) and 7.50 ×10-3 M CTAB 
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(22 mg) in 8 ml water was heated to 50 °C and once this solution reached to 50 °C, it was 

injected into hot tri-sodium citrate solution.  

To prevent the loss of water, the solution was refluxed by connecting the flask to a 

condenser (Figure 3.1). Preheating of the two solutions before mixing decreased the 

reaction time and resulted in a better control of the size distribution of the nanoplates 

meanwhile CTAB gave a good control over the shape and the formation of the 

anisotropic Au structures.  

After mixing the two solutions, a color change occurred after 5 min from yellow to 

colorless, indicating the formation of AuBr2− compound. After 30 minutes the solution 

temperature was slowly increased to 84 °C and kept at this temperature for 20 minutes to 

allow the reaction to fully complete and the solution became red brown, suggesting the 

formation of AuBr4− ions instead of AuCl4− ions. This is because Br− ions are stronger 

complexation agents for Au (III) compared to Cl− ions yielding the formation of AuBr4− 

ions. With the presence Br− in CTAB, the Au complexes (CTA+AuBr4−) were formed 

rather than formation of Au colloids. Subsequently, the metastable state of AuBr2− was 

reduced to Au (0). The high reduction rate of Au (III) to Au (0) in solution, leads to the 

formation of Au nuclei. 
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Figure 3.1 Schematic of the setup for synthesis of the nanoplate 

As-prepared solution was cooled down to the room temperature over 3 hours. The 

golden color of the solution indicated the presence of large gold structures dispersed in 

the solution. According to the general growth mechanism in the literature, it was 

proposed that the small gold seed particles were formed initially upon introducing the 

surfactant (CTAB). Thereafter, the gold nanoparticles grouped together to form gold 

plates with specific morphologies including triangular and pentagonal nanoplates. This 

process directed the formation of further nanoplates as depicted in Figure 3.2. 

HAuCl4+CTAB                        [CTA+AuBr-]                       AuBr2
-                       Au(0) 

 

 

Figure 3.2 Scheme of the formation of triangular gold nanoplates 

Au(III)                              Au(I)                         nuclei 
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In the last step, the solution was transferred to a glass centrifuge tube that has been 

previously functionalized (amine inner-coated glass vials) and centrifuged at 4000 rpm 

for 10 minutes the solution was then removed and washed 5-6 times. The gold nanoplates 

after being cleaned were sonicated for few seconds and drop-casted onto clean glass 

cover slides.31  

Numerous factors were taken into account, when finding the ideal reaction 

conditions including the reagent concentrations ([CTAB]/[HAuCl4] ratio), the reaction 

temperature and time necessary to reinforce the nanoplate formation. For example, the 

discussed synthesis used a 6 to 1 molar ratio between CTAB: HAuCl4.  By changing this 

ratio the size and shape of the gold triangles can change. In this synthesis a [CTAB]/ 

[HAuCl4] ratio of 6 was used for the synthesis of gold nanoplates, the use of various 

reagent ratios may give lower yields of nanoplates.38,39 

3.2.3 Preparation of Amine Inner-coated Glass Vials for Gold 
Nanoplates Solution 

To prevent aggregation of gold nanoplates at the bottom of the centrifuge test tube, 

the test tubes were functionalized with amine groups to trap the gold nanoplates on the 

side-walls of the test tubes. In order to functionalize the inner surface of glass vial, a few 

drops of 3-Aminopropyl tri-methoxy silane (APTMS-less than 20 L) were dropped in a 

glass Petri dish, and over the drop, a glass vial was placed upside down, with the aim to 

allow for the APTMS vapor to coat the internal side of the vial. The Petri dish with vials 

was placed into an oven at 130 oC for 2-3 hours to evaporate the silane compound and 

coat the surface of the vial with amine groups. The resultant vials was completely washed 
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with ethanol and water successively and used to contain as-prepared growth solution for 

the fractional precipitation.40 

3.2.4 Characterization of Gold Nanoplates 

Scanning electron microscopy was used to characterize one of the largest Au 

nanoplates synthesized, using the method described in section 3.2.2. A few typical images 

are shown in Figure 3.3.  

 

Figure 3.3 SEM images of the final nanoplates synthesized after 1h of reaction. Most of the 

nanoplates are several micrometers in width (typically 3 microns) 

An AFM image of an isolated Au nanoplate is shown in Figure 3.4. Showing that 

the shape and the lateral sizes can vary for the different nanoplates but the thickness is 

quite homogeneous and is typically ∼20 ± 3 nm. The rms roughness as measured by 

AFM is typically around ∼0.5−1 nm as compared to ∼4 nm rms of a 20 nm thick film 

prepared by electron-beam evaporation. This is an important parameter to consider for 

TERS experiments where the nanoplates are used as substrates. Low roughness substrates 

prevent possible local enhancements of the electromagnetic field from the surface 

defects. Furthermore, a flat surface yields homogenous deposition of a structure of 

functionalization at its surface allowing reproducible TERS experiments. 
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Figure 3.4 AFM images of gold nanoplate 

Hexagonal nanoplates represent more than one-third of the total structures. In   

addition, as shown in Figure 3.5, few   microplates   with   more unusual   structures   

(like spherical gold nanoparticles and etc.) are also present which may be removed by 

centrifugation and washing process (hot water and organic solution). The majority of the 

nanoplates additionally display sharp edges and sizes that allow one to located and select 

them under an optical microscope. 

 

Figure 3.5 Gold nanoplates with hexagonal and truncated triangular shapes. 

3.2.5 Synthesis of Silver Seed Solution 

To a clean round bottomed flask sodium citrate (0.075 M, 12 mL), silver nitrate (0.1 

M, 0.2 mL), and hydrogen peroxide (30 wt. %, 0.48 mL) were dissolved in 200 mL of 

1 m 1 m

a b
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Millipore water and stirred for a minute. A fresh solution of sodium borohydride (0.1 M, 

1.2 mL) was rapidly added to the silver solution and the seeds formed. The formation of 

the seed solution was determined based on the color change of the solution from yellow 

to orange to purple to blue. The solution was stirred for an additional 30 minutes, 

yielding a seed solution of AgNPs that had a diameter of ~2 nm. The solution was stored 

in the fridge at 5 °C until ready to use for the synthesis of silver triangles. When ready to 

use, the seed solution was centrifuged at 6000 rpm for 20 minute. The seed was collected 

and the volume was diluted to one fifth of the original volume. This proved to be 

problematic because the AgNPs did not fully separate at the centrifuged speed of 6000 

rpm. To overcome this obstacle, the particles were later concentrated using an 

ultracentrifugation system that spun the sample at 38000 rpm, which completely 

separated the seed solution. For the following experiments the seed solution concentrated 

using 6000 rpm was used, unless clarified.  

3.2.6 Synthesis of Silver Nanotriangles 

A solution of ascorbic acid (0.1M, 0.15 mL), sodium citrate (0.075 M, 0.10 mL) 

and silver nitrate (0.1 M, 0.12 mL) was dispersed in acetonitrile (5 mL) and Millipore 

water (10 mL). This solution was cooled to 5 °C and the seed solution was added. The 

desired size of the nanotriangles can be altered by changing the volume of the seed 

solution. For example, for nanotriangles approximately 200 nm in length, 0.2 mL of the 

seed solution was added. As the volume of the seed solution increases, the size of the 

nanotriangle decreases. After the addition of the seed solution, the silver nanotriangles 

formed by stirring the solution for 30 minutes. The silver nanotriangles were clean by 

centrifugation. Here the precipitate was collected and transferred to a vial and a few 



www.manaraa.com

66 

 

micro liters of diethyl amine was added to disperse the nanotriangles in solution. This 

solution was then stored in the fridge at 5 °C. (Figure 3.6) 

 

Figure 3.6 Scheme of the formation of triangular silver nanoplates (a) the formation 

of silver seeds and (b) the growth of silver seeds into triangular silver nanoplates.  

3.2.7 Characterization of Silver Nanoplates 

Four different sizes of the silver nanotriangles were synthesized. Figure 3.7 

shows that by changing the volume of the seed solution, the size of the silver triangles 

increases and the plasmon resonance changes accordingly yielding distinctive colors. 

From our observations the average size of the length of the triangles in solution A (12 mL 

of seed solution) is around 5 nm increasing to 700 nm for solution D, where the triangles 

are deformed into disks (0.04 mL of seed solution). The growth of the nanotriangles was 

monitored using UV-vis spectroscopy to monitor the absorption maxima of the solutions. 

A red shifted absorption and broadened spectrum was observed as the size of the triangle 

was increased (Figure 3.8). The absorption maximum for the seed solution was recorded 
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at 680 nm, was shifted to 719 nm while the triangles were formed (solution A), 903 nm 

(solution B), 981 nm (solution C) and above 1000 nm for solution D 

 

Figure 3.7 Pictures of colloidal solutions of silver nanotriangles with distinct sizes. The size was 

controlled by changing the initial volume of the seed solution added. The volume of seed solution is 

(A) 12 mL, (B) 2 mL, (C) 0.2 mL and (D) 0.04 mL 

 

Figure 3.8 UV-vis absorption spectra of solutions changing the size of the nanotriangle. The seed 

solution (    ), solution A (    ), solution B (    ), solution C (    ), and solution D (    ).    

The silver nanotriangles prepared from 200 µL of the seed solution (solution C) were 

characterized using SEM. Three different SEM samples were prepared for SEM 

characterization. The first sample was obtained from a freshly prepared solution that was 
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directly drop casted onto a silicon wafer piece and characterized by SEM (Figure 3.9 a, 

b). Equilateral triangles ranging in size from 160- 210 nm (edge length). The structure of 

these nanotriangles have very sharp vertices, yet significantly smaller than those reported 

in the literature for similar synthesis conditions (700 nm). One possibility may come from 

the starting diameter of the Ag seeds that have very small size.   The second sample was 

from a solution that was kept at fridge temperature (5°C) for a week before being 

deposited onto a silicon wafer and imaged (Figure 3.9 c, d). For these structures, the 

resulting size is within the 200 nm range but the triangles appear to be more aggregated 

with smoother vertices. A third sample was examined. The sample was drop casted, dried 

and kept under ambient conditions during a week prior to SEM imaging (Figure 3.9 e, f). 

No clear triangles can be observed probably due to oxidation of the Ag crystals. 

Nevertheless, the triangles that are kept in the dark and stored in solution appear to be 

stable and yield the same images as for a freshly prepared sample. 
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Figure 3.9 SEM images of a fresh prepared solution of nanotriangles (a & b), one week old solution 

(c & d) and a new solution that was dried and kept under ambient conditions for one week (e &f). 

AFM was used to image the silver nanotriangles and evaluate their compatibility 

with possible TERS measurements. The AFM images showed a lot of aggregation 

occurring between different nanotriangles making it difficult to isolate individual 

nanotriangles as shown in Figure 3.10. Also, due to the size of the nanotriangles limited 

to 200-300 nm, it was impossible to observe the nanotriangles with our optical 

microscope equipped with a 100x objective. The AFM topography image shows 

numerous aggregates, making it challenging to find an isolated nanotriangle. When an 

isolated triangle was located, a higher resolution AFM image shows that this single entity 
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was composed of several silver nanotriangles forming an aggregate as shown on the 

phase image of Figure 3.10. In conclusion, AgNTs were extremely hard to isolate using 

drop casting method for these small silver nanotriangles.  Unless an optimized method 

can produce triangles with sizes of several micron range with a cleaner surface similarly 

to gold nanoplates, the present silver nanotriangles are not suitable for TERS 

measurements as substrates.  

 

Figure 3.10 AFM image of silver nanotriangles. 

An ultracentrifugation system enabling speed of 38000 round per min (rpm) was 

ultimately used. After 90 min of centrifugation, the silver seeds were completely 

separated and the solution was used to synthesis the silver nanotriangles. The resulting 

triangles were drop casted onto a coverslip and imaged by AFM (Figure 3.11). The AFM 

scans, illustrates the challenges in finding an isolated nanotriangle, and highlights the 

concern of using these small silver nanotriangles in TERS. The zoomed view shows the 

edge being 420 nm in length and the thickness of the triangle being 15 nm. Although we 

were able to increase the size of the nanotriangle by a twofold factor, it was still to 

challenging to use these nanotriangles for TERS due to their small sizes.  
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Figure 3.11 AFM image of silver nanotriangles. 

3.3 Conclusion  

In summary, gold and silver nanoplates were synthesized and characterized. The 

gold nanoplates proved to be stable over time and yielded a clean and smoother surface, 

ideally suited for TERS applications. The gold nanoplates were also easy to find under 

both optical and atomic force microscopes being a few microns in width. Though silver 

nanoplates are interesting material alternative as substrates in TERS experiments, they 

are too small in size and presence too many surface defects which prevent their use in the 

context of this thesis. Gold nanoplates will be used as a substrate of choice for most 

TERS studies reported in this manuscript.  
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Chapter 4  

4 Tip-enhanced Raman Spectroscopy of Self-assembled 
Thiolated Monolayers on Flat Gold Nanoplates using 
Gaussian-transverse and Radially Polarized Excitations 

In this chapter, tip-enhanced Raman spectroscopy (TERS) is used to investigate 

self-assembled thiolated monolayers adsorbed onto surfaces with the goal to provide a 

better surface specificity in addition to a higher spatial resolution. We implement gap-

mode TERS described in Chapter 2 and we used gold nanoplates functionalized with 

thiolated reference molecules such as alkoxy substituted azobenzene thiol and 4-

nitrothiophenol. The monolayer is probed with a silver coated AFM tip in order to obtain 

the largest electromagnetic field enhancement from the surface plasmon localized 

between the silver tip and the functionalized gold surface. More specifically, the TERS 

spectra were collected from the self-assembled monolayer on gold using 532 nm 

excitation that is either linearly (Gaussian−transverse TEM00) or radially polarized. We 

also report on the nature of the collected TERS spectra for the thiolated molecules 

(azobenzene thiol and nitrothiophenol) that appear to be dependent on the polarization of 

the excitation light at the tip/substrate interface. 

4.1 Introduction  

TERS combines the vibrational imaging of a Raman microscope with the high 

spatial resolution of a scanning probe microscope. It has been used to study a variety of 

materials ranging from nanomaterials to biological samples 1-4 as well to induce 

photochemical reactions through a plasmon mediated effect.5 The use of TERS in the 

biochemical and biophysical sciences is particularly attractive since, unlike other 
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techniques (e.g., fluorescence microscopy), it allows for sensitive analyses of very small 

areas of a selected sample with a high spatial resolution (better than 20 nm) in the 

absence of any endogenous or exogenous labels. As mentioned earlier, labelling can lead 

to undesired artifacts and misinformation, and sometimes requires the synthesis of 

endogenous fluorophores, which could perturb the native organization of the bio-system 

of interest.6 Over the past decade, a number of seminal manuscripts and review papers on 

this topic have brought TERS to maturity for high resolution Raman imaging as well as 

single molecule detection when used in resonant conditions.7-11 TERS is an extension of 

surface enhanced Raman spectroscopy (SERS) that makes use of rough metal (Au, Ag, 

Pt, Cu) substrates to enhance the Raman signature of molecules located in its vicinity 

through electromagnetic field local enhancement. The literature in SERS is very abundant 

40 years after its discovery. Substrates such as films, electrodes, colloids, organized 

surfaces have demonstrated large local enhancements thus increasing the detection limit 

of Raman measurements. The principle of TERS is to use a single metal particle or a 

small aggregate of metal particle and bring it in proximity to a sample using a precise 

nano positioning system. The local electromagnetic enhancement serves as an antenna to 

local amplify both the excitation and the Raman signals. Local enhancements enabled by 

TERS  has enabled high sensitivity of detection down to the single molecule level 

together with high spatial resolution limited by the tip apex dimension.12 The collection 

of such locally-enhanced electromagnetic field contains the optical or spectroscopic 

information from the high spatial frequencies of the object (small details), and spatial 

resolution of spectroscopy measurements down to 12 nm has been demonstrated on ideal 

scatters such as carbon nanotubes.13,14 Beyond the drastic improvement of the spatial 
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resolution, TERS can also be employed to probe monolayers deposited or functionalized 

onto flat surfaces such as self-assembled monolayers (SAMs). This detection would be 

very difficult using standard non-resonant Raman scattering or mid-infrared, absorption, 

and only surface-specific techniques such as sum-frequency generation or polarization-

modulation spectroscopy could be used.15,16 Surface enhanced Raman spectroscopy 

(SERS) and surface enhanced infrared absorption spectroscopy (SEIRA) are also 

approaches of choice for detecting monolayers using nanostructured metallic surfaces 

prepared by a variety of methods including metal sputtering or advanced nanofabrication 

methods, but they do not provide a better spatial resolution and the molecular orientation 

over the surface has a large distribution due to the roughness of the SERS platform or 

SEIRA substrate.17-20  

Here we are investigating SAMS functionalized onto gold surface as model molecular 

systems using TERS with two distinct polarizations of the excitation light. More 

specifically, for the first time we compare, for the same functionalized object, a side-by-

side series of experiments using a tightly focused linearly polarized TEM00 beam and a 

radially polarized beam at the selected wavelength of 532 nm. 

The field enhancement strongly depends on the polarization properties of the exciting 

radiation with respect to the symmetry of the tip that it illuminates.4 Ideally, a 

polarization component of the impinging field along the tip axis leads to larger 

enhancements. In reflection geometry with a large angle of incidence, it is trivial to orient 

the polarization of the impinging laser in the plane of incidence thus with a large 

polarization component along the tip axis. In transmission geometry, a longitudinal 

component along the tip axis can also be observed when using a tightly focused linearly 
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polarized beam. At the focal point, most of the intensity of the total electric field will 

originate from the same component of the initial transverse polarization but there will be 

also a weaker longitudinal field with two lobes oriented along the tip axis. In such a 

condition, the TERS signal arises from these two lobes that are amplified by the presence 

of the metallic tip. A way to decrease the transverse component and to amplify the 

longitudinal component is to use a radially polarized mode.21-23 Using this approach, the 

cylindrical symmetry of the laser polarization is such that, when tightly focused with a 

high N.A. microscope objective, the radial components (Ex, Ey) of the electric field 

components overlap in phase at the focal point giving rise to a significantly larger 

longitudinal (Ez) component. When interacting with the metallic AFM tip, a larger 

amplification of the resulting electromagnetic field and a confinement at the tip extremity 

are observed providing the best condition for tip-enhanced spectroscopy 

measurements.13,24 

We report here on the change of relative Raman intensities and the near-field nature 

of the TERS measurements using a transmission geometry setup using both radial and 

linearly polarized (TEM00) modes. The samples investigated here are SAMs on flat gold 

nanoplates. More specifically we have investigated SAMS made of 4-nitrothiophenol and 

on 2-[4-(4-decyloxylphenylazo) - phenyl] ethyl thiol molecules adsorbed on these 

ultraflat nanoplates.25,26The choice of gold thin and flat nanoplates was driven by several 

factors, such as (i) the transmission geometry of the setup that requires a small thickness 

of gold in order to optimize the laser intensity going through the gold substrate, (ii) a flat 

surface of gold that can be functionalized with thiolated molecules with minimum surface 

enhancement effects from the nanoplate itself, and (iii) the interest to benefit from the 
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TERS “gap mode”, where the monolayer is isolated between two metallic interfaces, i.e. 

the gold substrate and the metallic tip.27 Such an approach elegantly proposed by 

Deckert’s group shows ideal conditions when the metallized TERS tip is in interaction 

with another ultraflat metallic surface.28-31 However in his work, the excitation mode is 

linearly polarized (TEM00) and we demonstrate here the interest of using a radially 

polarized mode in conjunction with gap-mode TERS. 

4.2 Material and Methods  

4.2.1 Chemicals 

Hydrogen tetrachloroaurate(III) trihydrate (Aldrich), cetyltrimethylammonium 

bromide (CTAB, ≥ 99%, Aldrich), sodium citrate dehydrate (tri-sodium salt 99%), and 

aminopropyltrimethoxysilane (APTMS, 90%) were purchased from Aldrich and used as 

received. 2-[4-(4-Decyloxylphenylazo)phenyl]ethyl thiol (w 398 g·mol−1) was 

synthesized following the procedure proposed by Marquestaut et al.18 4-Nitrothiophenol 

(MW 155.17 g·mol−1) was purchased from Aldrich. Ultrapure deionized water (18.3 MΩ 

cm−1) was used for all solution preparations. 

4.2.2 Self-Assembled Monolayer (SAM) Preparation 

SAMs were prepared by immersion of the coverslip coated with the gold 

nanoplate into a 10−3 M solution of thiolated molecules (azobenzene thiol, 4-

nitrothiophenol) in chloroform for 24 h. The functionalized nanoplates located onto the 

glass coverslips were washed several times with chloroform and distilled water prior 

drying with nitrogen.18 
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4.2.3 TERS Setup 

The TERS setup is described in Chapter 2. We just highlight here deviations from 

Chapter 2. Experiments were performed in transmission mode as depicted in Figure 4.1. 

In this geometry, light is focused from below via the sample substrate onto the tip and the 

sample. The tip is in feedback with the sample and interacts at the focal point with the 

evanescent waves confined at the surface of the sample. Here, thin glass coverslips (120 

μm thickness) were used to hold the thin gold functionalized nanoplates. The linearly 

polarized light with an excitation wavelength of 532 nm (Compass 315 M laser, 

Coherent) was focused with a high numerical aperture objective (PlanAPO Olympus, 

N.A. = 0.95, 100X) onto the metalized AFM tip. The laser intensity at the sample and 

after the 20 nm gold nanoplate was set to 300 μW. Under these conditions, no local 

heating or deformation of the nanoplates was observed. No drift of the AFM topography 

conducted in the presence of irradiation was observed either. The TERS probe was 

attached to its own (x,y,z) piezoelectric stage and was kept a few nanometers above the 

sample surface by means of a conventional AFM feedback mechanism. AFM scans are 

carried out in noncontact mode, and the AFM tips (NSG 10, NT-MDT Inc., silicon tips 

with a typical oscillating frequency of f = 240 kHz and a maximum force constant of k = 

37.6 N/m) were coated with 20 nm of silver by means of electron-beam induced thermal 

evaporation of the metal and were used within a day of the deposition or kept for a 

maximum of 24 h in a desiccator purged with Argon. The typical curvature of these 

commercial tips ranges from 6 to 10 nm for non-coated tips. Upon coating with the silver 

thin film the measured radius is 25 nm as estimated by scanning electron microscopy 
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(SEM, Figure 4.1b, inset). The cone angle at the apex is 7°−10° as specified by the 

manufacturer. 

 

Figure 4.1 TERS setup in back reflection geometry. 

The laser mode either was coming directly from the linearly polarized laser 

excitation or was modified with a liquid crystal modulator with phase compensation 

(ARCoptix) to generate a radially polarized mode (Figure 4.2b). In such a case the beam 

was preliminarily expanded to a 10 mm diameter before entering the LC cell. A shear 

plate was used to check that the beam was parallel before entering the cell. After coming 

through the LC cell, the beam was further filtered with a spatial filter and made parallel 

with a 10X microscope objective. The diameter of the beam was further reduced to a 4 

mm diameter with a set of convex (f = +100 mm) and concave lenses (f = −25 mm). The 
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size of the beam was finally slightly adjusted so that it filled the entrance pupil of the 

high numerical aperture objective. 

 

Figure 4.2 (a) Gaussian linearly polarized excitation source (b) Radial excitation source. 

  

4.3 Results and Discussion 

It is critical in TERS to perfectly align the tightly focused laser beam at the 

extremity of the tip. To this end, several methods can be used when using a tip mounted 

on its own (x, y, z) scanner which is the case for the AFM instrument used in this study. 

To locate the tip end, vertical deflection of the AFM can be used. For this the tip in 

feedback with the sample or a few nanometers above the sample must scan the region 

located in the focal plane. The laser intensity can be raised so that the tip vertical 

deflection can be monitored as shown in Figure 4.3a leading to the rough localization of 

the tip extremity. A second alternative involves the detection of the scattering of the tip 

extremity using a photodiode located in the path of the microscope. Here again, the tip 

must scan above the sample in the (xy) plane and generate typical scattering maps as 

shown in Figure 4.3b. The tip location can be here unambiguously identified. A third 

method involves the Raman mapping of the metal-coated silicon tip. Even though the tip 

is coated with only 20 nm of silver, the scattering cross section of the silicon is so large 
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that the intensity of the silicon peak at 520.7 cm−1 (first order optical phonon of bulk 

silicon) of the cantilever and the tip can be detected through a Raman map of the 

scanning probe. Here again the tip is raster scanned in the (xy) focal plane using its own 

piezo electric actuator. The Raman maps shown in Figure 4.3c, d show the variation of 

silicon peak intensity without or with background correction, respectively. The maximum 

intensity of the silicon peak maximizes the chances to locate the tip. These three methods 

can be further optimized by selecting smaller scanning regions around the tip position. 

For most experiments, we first use vertical deflection in fake feedback mode (tip away 

from the sample but yet scanning) to roughly determine the tip position. Scattering is then 

used with the tip in feedback with the sample to more precisely locate the tip, and finally 

the Raman signal of silicon is used to more precisely locate the tip by maximizing the 

Raman intensity. This ensemble of methods used to locate the tip depends on the 

substrate as well as the composition and the geometry of the tip. Once the tip location is 

found and positioned accurately at the focal point, the x,y position of the tip piezo 

scanner is frozen, and the sample scanner will move the sample in the lateral directions x 

and y while the z tip scanner maintains the feedback between the tip and the sample 

surface. In our experiments, flat gold nanoplates with a thickness of 20 nm were first 

identified on the glass coverslips. 
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Figure 4.3 (a) Vertical deflection from the tip b) scattered laser light from the tip apex c) Raman 

intensity map without background correction d) Raman intensity map with background correction 

 
A typical SEM image of a pristine gold substrate prior to functionalization with 

thiolated SAM is shown in Figure 4.4a An AFM image of an isolated Au nanoplate is 

shown in Figure 4.4b. The shape and the lateral sizes can different for nanoplates but the 

thickness is quite homogeneous and is typically ∼20 ± 3 nm as shown in the inset of 

Figure 4.4b. The rms roughness as measured by AFM is typically around ∼0.5−1 nm as 

compared to ∼4 nm rms of a 20 nm thick film prepared by electron beam evaporation. 

Higher features corresponding to smaller gold particles with a variety of different shapes 

(spherical, cubic, hexagonal) can be observed on the gold nanoplates and can be removed 

to some extent by subsequent washing. The height of these particles shown in Figure 

4.4b is typically 20 nm. For the Raman measurements conducted on the SAMS, these 
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particles do not necessarily interfere with the measurements as long as the TERS tip can 

be located precisely away from these particles. This avoids any possible SERS effect 

from the individual particle. 

 

Figure 4.4 (a) SEM image of gold nanoplate (b) AFM image (with cross sections) of the Au (111). 

TERS spectra were acquired on selected points , ,  and . 

4.3.1 TERS Study of Azobenzene Thiol. 

The TERS spectra of the azobenzenethiol monolayer were recorded at four 

different positions as indicated in Figure 4.4b and are presented in Figure 4.5 a, b for 

radial and transverse input polarizations, respectively. In both measurements, the 

intensity of the laser was similar and set to 9 mW at the entrance of the objective. This 

value is relatively high for a microscope measurement, but a large portion of the light is 

back reflected at the glass coverslip/gold interface or absorbed by the 20 nm thick gold 

plate. Only 300 μW effectively reaches the sample/ tip junction requesting that the 

acquisition time range from 10 to 45 s. Spectra reported in Figure 4.5a at three different 

locations on the metallic nanoplate (noted 1, 2, 3 in Figures 4.4b and 4.5a) were 

acquired with a 45 s acquisition and show significant enhancement of the signal due to 
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the proximity of the silver tip. When the tip is brought 20 nm away from the gold surface 

(noted 1 (20 nm) in Figure 4.5 a the signal vanishes quickly while no Raman signal can 

be seen from the glass coverslip eliminating any possible contamination of the AFM tip 

or the presence of aggregates on the glass surface (point 4). 

 

Figure 4.5 (a) Tip-enhanced Raman spectra measured with a radial polarization of an azobenzene 

monolayer functionalized onto a gold nanoplate (λ=532 nm, acquisition time=45 s). The TERS 

spectra were measured at points , ,  and . Spectra was also measured with the AFM tip 

located 20 nm away from the surface (point  (20nm)). (b) Tip-enhanced Raman spectra measured 

with a linear polarization of an azobenzene monolayer functionalized onto a gold nanoplate (λ=532 

nm, acquisition time=45 s). The TERS spectra were measured at points , ,  and . Spectrum 

was also measured with the AFM tip located 20 nm away from the surface (point  (20 nm)). 

Further intensity versus distance measurements are later discussed for the measurements 

conducted on the gold nanoplate. The Raman band measured at 1141 cm−1 is related to 

the in-phase stretching of the νphenyl−N bond, while the CH in plane bending mode 

reported at 1188 cm−1 likely overlaps in our spectra with the 1141 cm−1 mode (weak right 

shoulder). The modes at 1409 and 1457 cm−1 are mainly in-plane ring bending modes 
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with coupling to the N=N stretch. The C=C stretching of the phenyl rings is located at 

1600 cm−1. In Figure 4.5b, similar measurements were done with a transverse Gaussian 

mode. Similar laser intensities and acquisition times were used, and the spectra obtained 

at three distinct points (noted 1−3) are clearly weaker than in the case of a radially 

polarized mode. The large peak at ∼1000 cm−1 is coming from the glass coverslip and is 

comparable for both radial and transverse modes. The Raman modes of the azobenzene 

thiol can be seen, but the relative intensities are altered. For example the shape and the 

relative intensity of the phenyl ring mode at 1600 cm−1 is different for the two input 

polarizations. Similarly the two peaks at 1409 and 1457 cm−1 are clearly identified in 

Figure 4.5b with a radial mode while only one peak at 1457 cm−1 appears when a 

transverse Gaussian mode is used. Furthermore, the difference between the far (20 nm 

above the surface) and near-field measurements is less marked in the case of a Gaussian 

mode as compared to the radial mode. The signal is increased by a factor 2−3 when 

Gaussian mode is used, while a 6−8 factor can be reached when using the radial mode. 

From these results we can conclude that (i) the radial mode appears to be more effective 

for TERS measurements leading to a higher enhancement, (ii) the relative intensities of 

the Raman modes can be affected by the input polarization of the laser source, and, last, 

(iii) the TERS nature of the signal is evidenced by a significant decrease of the signal 

when the tip is 20 nm away from the surface. 

4.3.2 TERS Study of 4-Nitrothiophenol (4-NTP) 

4-NTP is a model molecule that can be efficiently used for TERS measurements on 

the gold nanoplate. An AFM image of the isolated Au nanoplate was first acquired, and 

four points were selected to perform TERS measurements as indicated in Figure 4.6a.  
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Figure 4.6 (a) AFM map of gold nanoplate functionalized with 4-nitrothiophenol structure. 

 
The TERS spectra shown in Figure 4.7 a,b were collected using a radial mode 

and a transverse mode, respectively, and measured at three different locations over the 

gold nanoplate (points 1, 2, 3) with a 45 s acquisition time. In both cases, the spectra are 

significantly more intense when compared to measurements when the tip is retracted by 

20 nm demonstrating clearly the interest of TERS for vibrational measurements at the 

monolayer level. Similarly to the study of the azobenzene SAM, no TERS signal can be 

detected when the tip is located outside the gold nanoplate eliminating any possible 

contamination of the AFM tip (point 4). For 4-NTP the bands at 1140 and 1188 cm−1 can 

be attributed to the C−H stretching bending and C−H in-plane bending while the bands at 

1335 and 1440 cm−1 are assigned to the NO2 stretching vibrations.  
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Figure 4.7 (a) Tip-enhanced Raman spectra measured with a radial polarization of a 4-NTP 

monolayer functionalized onto a gold nanoplate (λ=532 nm, acquisition time=45 s). The TERS 

spectra were measured at points , ,  and . Spectrum was also measured with the AFM tip 

located 20 nm away from the surface (point  (20nm)). (b) Tip-enhanced Raman spectra measured 

with a linear polarization of a 4-NTP monolayer functionalized onto a gold nanoplate (λ=532 nm, 

acquisition time=45 (s). The TERS spectra were measured at points , ,  and . Spectrum was 

also measured with the AFM tip located 20 nm away from the surface (point  (20 nm)). 

 

It is noteworthy that the relative intensities of the Raman bands are here again 

dependent on the input polarization. More specifically, when using the transverse mode, 

the relative intensity of the Raman peak at 1140 cm−1 appears to increase when compared 

to peaks at 1188 and 1107 cm−1 while the peak at 1335 cm−1 is less intense compared to 

when the radial mode is used. Such changes in intensities have been observed in several 

studies and are related to the photo reduction of the 4-NTP into a 4,4′-

dimercaptoazobisbenzene molecule anchored at both ends to the gold surface.32 Such 

spectral changes do not seem to be observed when the radial mode is used. This 

observation indicates that the efficiency of the photo reduction of 4-NTP is therefore 

dependent on the input polarization. When considering that, on similar types of molecules 
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such as benzene thiol, the average molecular orientation of the benzene group is tilted 

with a 30° angle with respect to the (111) gold surface,33 there is a correlation between 

the orientation of the nitro group undergoing photo reduction and the irradiation laser 

source polarization. In other terms, the photo induced reduction of the NTP monolayer 

appears to be less efficient when a larger longitudinal field is used, although the 

orientation of the NO2 stretching mode has also a larger component along the normal 

direction with respect to the gold (111) surface. This observation implies that either the 

average orientation could be larger than 30° in particular if multiple layers are formed 

over the gold surface. A long functionalization time (24 h) and a high concentration of 

the NTP in chloroform (1 mM) are critical factors that may be responsible for a large 

orientation distribution of molecules on the gold surface. 

Last, in order to ascertain the near-field nature of the enhancement, the Raman 

intensities of several bands were measured as a function of the axial z position of the tip 

with respect to the sample plane. At z = 0 the tip is in feedback with the sample, while, at 

increasing z positions, the tip is brought away from the functionalized surface. Such 

experiments were conducted for both thiolated azobenzene and 4-nitrothiophenol as 

probed by radial and linearly polarized excitations and are reported in Figure 4.8  for the 

most intense modes in both compounds. The tip−sample separation distance was set to z 

= 0, 5, 7, 10, 20, 50, 100, 500, 1000 nm using the piezo electric actuator of the tip. At 500 

nm of separation, no signal can be observed for most modes. The variation of intensities 

between 0 and 500 nm were fitted with a 1/r5±1 law, with r being the separation distance 

between the tip and the surface of the sample, as shown in the inset of Figure 4.8 c, d for 

4-NTP (mode at 1335 cm−1) with radial and transverse Gaussian modes, respectively. 
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Similar behavior was observed for both Gaussian and radial modes confirming the very 

fast decay of the near field enhancement due to the presence of the tip. Within the first 10 

nm the signal of the maximum Raman intensity decreases by 90−95% thus confirming 

the near-field nature of the TERS experiments when using transverse and radial modes. 

 

Figure 4.8 Raman intensity versus tip-sample distance using linearly polarized light and radially 

polarized light conditions for gold nanoplate functionalized with azobenzene thiol (a,b) and 4-

nithiophenol (c,d). The inset of c and d show the fitting curve used for the sNO2 mode at 1335 cm-1. 
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4.4 Conclusion  

In summary, self-assembled monolayers were investigated by tip-enhanced 

Raman spectroscopy using linearly or radially polarized excitations for the input 

excitation. Thin (20 nm) and ultraflat gold (111) nanoplates were functionalized with 

thiolated azobenzene and 4-NTP. The TERS nature of the collected signal from the 

functionalized monolayer was demonstrated by changing the tip−sample distance 

revealing the fast decay of the near-field when the tip is brought out of contact. More 

importantly, for similar laser irradiance, the use of the radial mode with a strong 

longitudinal electric field component seems to yield more intense TERS spectra as well 

as to minimize possible photochemical processes occurring at the surface of gold. This is 

shown specifically in the case of 4- NTP where reduction of the nitro group seems to be 

inhibited as compared to irradiation with the transverse mode. Last, it is noteworthy that 

we have deliberately measured TERS on selected points over the gold nanoplates with 

minimum roughness in order to avoid altering the polarization of the excitation source. 

Specifically, we avoided the sharp edges of the gold nanoplates as well as the gold 

nanoparticles located over the nanoplate. Nevertheless, these features could be utilized to 

provide additional enhancement effects through SERS and the localized surface plasmon 

located at the apexes and edges of the nanoplates. High-resolution TERS mapping could 

be of interested to provide the distribution of the electromagnetic field enhancement over 

a single nanoplate. 
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Chapter 5  

5 Tip-enhanced Raman Spectroscopy of Graphene 
Layers on Flat Gold Nanoplates Substrate 

In this study, tip-enhanced Raman spectroscopy (TERS) is used to characterize 

graphene layers using the gap-mode geometry. Such geometry provides larger 

enhancement of the local electromagnetic field since the small distance between the TERS 

tip and the Au substrate provides access to sub 10 nm gap sizes thus providing higher local 

confinement in the vicinity of the interface formed by the tip and the gold flat surface.  

Few-layer graphene platelets are deposited onto ultra-flat gold substrates using a surfactant 

assisted method. A gold coated AFM tip is subsequently used to probe specific substrate 

regions occupied by the platelets. TERS spectra were collected on distinctive points on the 

graphene layers using radially or linearly polarized excitation sources, with an excitation 

wavelength of 632.8 nm. The position, width and intensity of G, D, and 2D Raman-active 

modes of graphene are discussed as a function of the incident light polarization and for 

distinct positions on the graphene layer. We report here on the nature of the collected TERS 

spectra focusing in particular on the edges of the graphene platelets. 

5.1 Introduction  

Carbon-based materials play a major role in today’s science and technology. In 

particular, graphene is well known for its unique electrical and mechanical (robustness, 

flexibility) properties. The scalability of graphene devices to nanoscale dimensions 

makes them promising candidates for applications in nano-optoelectronics.1,2 Ideally, 

characterization tools suitable for investigating graphene-based materials should be fast 

and non-destructive. They must offer high spatial and spectral resolution, provide 



www.manaraa.com

96 

 

structural and electronic information, and should be applicable at both laboratory and 

mass production scales.  

 In the last two decades, Raman spectroscopy has emerged as a powerful and non-

destructive technique to characterize the electronic properties and vibrational modes of a 

wide range of carbon nanostructures, including graphene. The micro-Raman spectrum of 

few-layer graphene has been studied in great detail as a function of the number of layers 

by Ferrari et al.3-5  Raman spectra are relatively similar in graphene and graphite but 

some differences exist due to the missing interactions between stacked layers in 

graphene. Raman spectroscopy is one of the most widely used methods to investigate 

carbon materials.6-10 However, at the scale of a single graphene flake, micro-Raman 

spectroscopy is limited in terms of spatial resolution by the Abbe’s criterion.11,12 

Although not yet a turn-key instrument, tip-enhanced Raman spectroscopy has matured 

over the past decade as a characterization probe with sub-wavelength imaging 

capabilities and is becoming a suitable tool for leading to spatial resolutions in the 10-50 

nm range in optimal conditions.13-17  

TERS appears as a unique characterization technique combining the capabilities 

of Raman spectroscopy to reveal the chemical composition of solids with the high spatial 

resolution of scanning probe microscopy (SPM). It can be used to obtain spectroscopic 

analysis of a large variety of materials and biomaterials with a resolution merely 

depending on the probe geometry.13,18-22 In TERS experiments, signal enhancement is 

generated by the excitation of surface plasmon localized at a metallic SPM tip apex by 

means of its coupling with the Raman modes of the specimen. Interaction between the tip 

apex and the near-field component of the Raman-scattered radiation is achieved by 
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approaching the tip to within a few nanometers of the sample’s surface, which creates an 

increase in the observed Raman signal originating from a region determined by the radius 

of the tip’s apex that is scanning the surface. Tip apices used for TERS are typically in 

the 10-20 nm diameter range for commercial SPM probes coated with a thin metallic 

layers such as gold or silver. In addition of improved surface sensitivity due to local 

electromagnetic field enhancement in the vicinity of the tip, another interesting effect is 

associated with TERS and specifically, the increase in spatial resolution which could 

extend far beyond the optical diffraction limit giving the possibility to explore the 

physical and chemical properties of materials at the nanoscale level.23-25   

In this report, we present TERS analysis of few-layer graphene flakes deposited 

onto gold nanoplates.26,27 In particular, the enhancement of the Raman signals allows 

TERS to detect subtle structural features at the edges of the graphene platelets. 

Furthermore, we evaluate the effect of polarization of the input excitation beam using a 

tightly focused linearly polarized or a radially polarized beam at the selected wavelength 

of 632 nm. 

5.2 Material and methods  

Graphene was exfoliated following the procedure proposed by Sharifi et al.28 from 

highly oriented pyrolitic graphite (Sigma Aldrich Inc) using ribonucleic acid extracted 

from torula utilis (Aldrich) as a non-ionic surfactant. Ultrapure deionized water (18.3 MΩ 

cm-1) was used for all solution preparations. 
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5.2.1 Exfoliation and Deposition of Graphene Flakes on Gold 
Nanoplates. 

Few-layer graphene flakes were deposited on glass substrates decorated with gold 

nanoplates using the method originally developed by Wu et al.29 for single-wall carbon 

nanotubes, adapted by Eda at al.30 for graphene oxide and further developed by Sharifi et 

al.28 for surfactant-exfoliated graphene flakes. Graphite used as a starting material for this 

process was ultra-sonicated for 24h in a 3:1 H2SO4:HNO3 mixture, mildly oxidized in 

Piranha reagent (H2SO4:H2O2=4:1) and subsequently dried prior to further use. 6 mg of 

the resulting material were ultra-sonicated for 4h in a 0.6 g/L water solution of RNA that 

acts as a non-ionic surfactant to exfoliate graphite in thin sheets of graphene.28 The slurry 

produced by ultra-sonication was left to sediment overnight at 2˚C in a beaker. The top 

three-quarters of the suspension were centrifuged at 6000 rpm for 1h, and the 

supernatant, largely consisting in weakly oxidized and well dispersed few- and single-

layer graphene flakes,28 was collected and used for graphene flake deposition. 

 The deposition process basically consists in three steps: i) 5 ml of water 

suspension of graphene flakes and RNA is vacuum-filtrated through a 220-nm pore size 

nitro-cellulose filtration membrane, which leads to the deposition of graphene flakes on 

the membrane if sufficiently small amounts of diluted suspensions are used to prevent re-

aggregation of the flakes; ii) the filtration membrane loaded with graphene flakes is 

subsequently transferred onto the requisite substrate, previously decorated with gold 

nanoplates and is dried under load in a vacuum desiccator. iii) finally the filtration 

membrane is etched in consecutive acetone and methanol baths, leaving behind a random 

distribution of graphene domains and RNA aggregates on their substrate. 
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 The samples were annealed on a hot plate at 540 ˚C for 30 min inside a VAC 

Nexus glovebox purged with nitrogen, at oxygen and moisture levels less than 2 ppm. 

The annealing process is known to remove the residuals of RNA from graphene.28 

Extensive characterization, including atomic force microscopy, scanning electron 

microscopy and conventional Raman spectroscopy was previously used to investigate the 

results of this process, which results in more than 50% clean graphene flakes with less 

than 5 layers.28 In our case, some of these flakes are situated on top of the gold platelets 

and have been used for tip-enhanced Raman studies. 

5.2.2 TERS setup 

The TERS setup is described in Chapters 2 and 4. We used a He-Ne laser as an 

excitation source with an intensity set to 100 µW at the sample using the transmission 

setup. This power value takes into account the light absorbed by the 20 nm-thick gold 

nanoplates on the top of which our graphene flakes are located. 

 

Figure 5.1 TERS setup in back-scattering geometry. 
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For this study, the AFM tip used for these experiments were prepared from 

commercially available silicon cantilever (NCL, NANO WORLD Innovative 

Technologies, typical oscillating frequency of  these cantilevers are about 190 kHz with a 

maximum force constant of k=48 N/m. These tips have been coated with a 20 nm-thick 

gold layer using electron-beam induced thermal evaporation. A preliminary 3 nm layer of 

Ti was deposited to improve Au adhesion on Si. The Rayleigh scattering was used to 

align the tip as described in Chapter 2. 

 TERS measurements were performed for various tip-sample distances ranging 

from the optical near-field to far-field. Line scan measurements were performed at 

nanoscale resolution using step of 5 nm between two adjacent points. All Raman spectra 

were recorded in the 1000–3000 cm-1 spectral range. Laser excitation was polarized either  

linearly or radially for the Raman measurements. The size of the beam was adjusted to 

fill the entrance pupil of the high numerical aperture objective. 

5.3 Results and Discussion 

5.3.1 TERS Tip Alignment 

In TERS, it is critical that the laser beam is tightly focused at the apex of the 

metallized tip. To align the laser beam coincidentally with the AFM probe, we first 

measured the Rayleigh scattering from the tip that scans the fixed focal volume of the 

excitation beam. The scattering map allows one to map the position of the tip apex and 

then, using the X,Y piezoelectric positioning stage of the tip, to align it exactly at the 

centre of the focal point. Figure 5.2a and 2b show the scattering maps measured from a 

radial and linearly polarized beams, respectively.  
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Figure 5.2 Scattered laser light from the tip apex under radial (a) and linearly polarized (b) 

polarization configurations. 

 

Once the tip is coincidental with respect to the excitation light and brought in 

feedback with the surface of the sample, the sample stage is used to scan the sample 

along the X and Y directions while the Z feedback of the tip is maintained using the Z 

piezo actuator of the tip. In our experiments, flat gold nanoplates with thickness of 

around 20 nm were used as substrates onto which graphene flakes were deposited. Figure 

5.3a and 3b show an AFM image and topographical profile of a few-layer graphene flake 

placed over an isolated Au nanoplate. As shown in Figure 5.3b, the thickness of the flake 

is ~5 nm which corresponds to a number of layers ranging from 3 to 10 graphene layers. 

It was not possible to isolate a single-layer graphene over the gold nanoplates because of 

the small height contrast. For the TERS gap-mode experiments, we therefore used in this 

study few-layer graphene platelets deposited on Au substrate. 



www.manaraa.com

102 

 

 

Figure 5.3 (a) Atomic force microscopy (b) images of gold nanoplate partially covered with a 

graphene flake. (c) Cross section of the few-layer graphene flake deposited onto the gold nanoplate. 

TERS spectra were acquired on selected points 1, 2, 3, 4, 5.  

5.3.2 TERS Study of Graphene on Flat Gold Nanotube 

The TERS spectra were recorded at five different positions as indicated in Figure 

5.3b and are presented in Figure 5.4a, b for both radially and linearly polarized 

excitations, respectively. 

 

Figure 5.4 Tip-enhanced Raman spectra measured in 5 distinct locations shown in Fig. 3a with a 

radially (a) and linearly (b) polarized excitation (λ = 632 nm, acquisition time = 15 s). 

 

The  spectra reported in Figure 5.4 a,b were measured at five different locations 

on the graphene flake located on glass and on Au nanoplate (noted 1, 2, 3 in Figure 5.3a) 
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using a 15 s acquisition time. The background signal from the gold nanoplate (point 4) 

and for the glass coverslip (point 5) were also collected. The strongest TERS response 

was recorded when the tip was positioned on the edge of gold nanoplate indicated by 

location in spot 1 in Figure 5.3a. Enhancement at this specific edge may be a direct 

indicator of a large number of lattice defects induced by the bending of the graphene 

flake over the edge of the gold nanoplate. Additionally, increased sensitivity may occur 

on this feature because of the change in orientation of the graphene layer relative to the 

tip and resulting polarization of the enhanced field. 

 

Figure 5.5 Selected TERS spectra of graphene deposited on gold and on glass acquired using 

radially (a) and linearly (b) polarized excitations 

The TERS spectra shown in Figure 5.5 a, b were collected using radial and 

linearly polarized modes for graphene flakes located on gold and on glass coverslip. 

Considering the transmission geometry of our setup and the thickness of the gold 

nanoplate (~20 nm), a significant portion of the 632.8 nm excitation is actually absorbed 

by the gold nanoplate. The collected TERS signal should be corrected from the gold 

nanoplate absorption. Even though the measured spectra have the same magnitude, the 
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spectrum obtained using radial polarization is in reality obtained with much less light 

intensity Figure 5.5b also highlight that the spectra show comparable magnitude when 

measured with linearly polarized light meanwhile the radially polarized light shows 

enhanced contrast. We can therefore conclude that, in this specific geometry, the radial 

mode on gold nanoplate substrate appears more effective for TERS measurements 

yielding a higher enhancement of Raman signal from the graphene flake compared to 

using a linear polarization under the same conditions. All experiments described below 

were performed using a radially polarized mode. 

The Raman spectrum of graphite and multilayer graphene consists of three 

fundamentally different sets of Raman phonon modes referenced as D, G and 2D.  The 

fundamental defect mode appearing at 1333 cm-1 and is sensitive to the presence of defect 

in the graphene structure. Interestingly, The D peak behaves in a different way compared 

to the G (1580 cm-1) and 2D (2684 cm-1), because it is used to determine the number and 

orientation of layers, the quality and types of edge, and the effects of perturbations, such 

as electric and magnetic fields, strain, doping, disorder and functional groups.31,32 In 

graphene study, defects play a critical role and their identification, quantification and 

manipulation allows one to enable a wider range of promising applications. The defect 

induced D band occurs because of a double resonance process that requires elastic 

scattering from a defect and inelastic scattering by a phonon. Thus, the maximum Raman 

intensity of the D mode, I(D), should be measured when the focused laser beam crosses 

the edges. Edges are preferred sites to attach functional groups, and their electronic and 

magnetic properties are different from the bulk.32 Practically the intensity of the D band 

is dependent on edge type, such as whether it takes a zigzag or armchair conformation 
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and its Raman intensity also varies with the incident polarization. For ideal edges, the D 

peak is absent for zigzag configuration and large for armchair, allowing in principle the 

use of Raman spectroscopy as a sensitive tool to determine the edge orientation. In 

reality, the D to G ratio does not always show a significant dependence on edge 

orientation.33 The ratio of the D to G peak intensity I(D)/I(G) may be used to identify 

zigzag edges, which give very low I(D)/I(G) values near 0.05 for graphene flakes 

obtained by micromechanical exfoliation, in contrast to intensity ratios near 0.3 reported 

for armchair edges.34  For graphene flakes with only pure zigzag or armchair edges the 

angles formed between the edges are 2n×30º (with n = 1, 2, 3 ...). In contrast, graphene 

flakes with neighboring zigzag and armchair edges will have angles of (2n- 1) × 30 º 

(e.g., 30 º, 90 º, 150 º).35 This angle implies, for ideal edges, that if one edge is zigzag the 

other must be armchair or vice-versa, but the two edges cannot have the same chirality.36 

We report in Figure 5.6 a-c the Raman spectra and associated I(D)/I(G) ratio for both 

zig-zag and armchair configurations that are 0.05 and 0.13, respectively. The Raman 

intensities used to calculate these ratios were integrated in the [1303-1348] cm-1 and the 

[1520-1642] cm-1 spectral ranges for the D and G modes, respectively. 
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Figure 5.6 (a) AFM image (b) Schematic view of angles formed between two graphene edges. (c) 

TERS spectra measured at red and blue points. 

 

The intensity of the D band also strongly depends on the angle between incident 

polarization and the graphene edge. It is maximum for polarization parallel to the edge 

and minimum when the polarization orientation is perpendicular to the edge.35 Besides 

the relative orientation of the graphene plane with respect to the input polarization, it is 

also critical to evaluate the anisotropic effect due to the enhancement of the field along 

the direction normal to the surface (z direction). Although excited by a focused linearly 

polarized Gaussian beam, the plasmon of the metallic tip can yet be excited due to the 

small z component of the field along the z direction.37 Such polarization-dependent 

enhancement has significant implication on the polarized Raman spectrum of the 

graphene. Depending on the angle of the input polarization and the overlap of the 

enhanced field with the graphene layer, the detected local intensity of specific flakes can 

be drastically different. 

The other characteristic G peak appears around 1580 cm-1 and is observed in all 

graphitic forms and carbon structures having sp2 hybridization(C–C bond). The intensity 
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of the G-band should, in principle, vary linearly with the number of layers.  However, it 

is not exactly proportional to the layer number n. Since this mode is much stronger 

compared to other modes, it is possible that small changes due to the variation of a small 

number of layers are buried under the strong intensity and are not clearly visible in the 

experiment. 

 

Figure 5.7(a) AFM image with two cross Sections on edge boundaries and regions away from the 

edges. (b)TERS spectra were acquired on selected points 1,2,3,4,5 .(c)  Cross Sections of sample and  

TERS signal of G band along the scanning directions indicated in green line. (d) Cross Sections of 

sample and TERS signal of G band along the scanning directions indicated in blue line 

The peak around 2685 cm -1 is the so-called 2D band (or G band) and is observed 

in all graphitic structures. This second order resonance that appears as a doublet process 
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is quite sensitive to lattice perturbations affecting the vibration and electronic properties 

of graphene. Its position depends on the excitation energy but the shape of this peak gives 

information about the thickness of graphene. In measurements where the 2D band 

appears as a single peak indicates that we are in the presence of a single layer graphene.  

When a shoulder appears at lower wavenumber of the shifted 2D main peak then it can be 

deduced that the graphene sheet is comprised of more than one layer Ultimately the 

number of layers can be deduced by analyzing the shape of the peak (Figure 5.7). As 

depicted Figure 5.7a we measured TERS signal across the edge boundaries (green line) 

and across an isolated graphene layers (blue line) to investigate the vibrational and 

electronic properties with a nanoscale spatial resolution corresponding to the tip position 

during the measurements at 100 points and 80 points along the arrow in two directions. 

The spacing between two adjacent points is ~8 nm. Figure 5.7b shows selected TERS 

spectra of a graphene flake located along the edge of a gold flake. When going from the 

outside (point 1) to the inside of the graphene sheet (point 2), the intensity of the defect 

peak I(D) first increases, and then decreases whereas I(G) increased moving from inside 

to outside the flake. In Figure 5.7cwe show the variation of intensity of the G mode 

together with the variation of the topography along the edge of the Au nanoplate.  

Further, point spectra were taken on the green line in Figure 5.7a. Flat regions away 

from the edges or structural distortions typically show no enhancement of the D peak and 

just enhancement in the G peak and 2D peak (Spot 3, 4, 5). Figure 5.7d shows a 

significant increase of the G mode at the edge formed by the assembly of graphene and 

gold platelet. The signal decrease once on the flat portion of the assembly. 
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Figure 5.8 (a) Tip-enhanced Raman spectra measured in Near-field and Far-field (b) log Raman 

intensity versus tip-sample distance 

The spectra shown in Figure 5.8a shows the influence of the gold tip proximity from 

the graphene layer varying from near-field (tip in feedback) to far-field (tip 90 and 1000 

nm away from the surface). A series of Raman spectra was acquired by changing the 

distance between the tip and the sample while the tip was kept in feedback. These results 

clearly demonstrate that the highest intensity of the Raman signal is obtained when the tip 

is in proximity with the graphene flake. The z-distance dependence of the Raman signal 

graph (G mode at 1580 cm−1, 20 s acquisition time per spectrum) for tip−sample 

separation varying from z = 5, 10, 12, 15, 20, 25, 50, 75, 100, 150, 200, 250, 400, 500, 

750, 1000 nm is shown in Figure 5.8b using a log scale. These measurements were done 

using the piezo electric actuator of the tip, yet keeping the feedback at all time. 

Additional measurements performed when the tip is out of feedback and retracted from 

the surface were done at z=5000 and 10000 nm. Figure 5.8b highlights that the extension 

of the Raman signal decays rapidly after the near -field region. 
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5.4 Estimation of the Enhancement Factor 

At 1000 nm of separation, no signal can be observed for most modes. Actually 

experiments have shown gap-mode enhancement to decay strongly within 20 nm and 

almost vanish within 1µm. Thus, the increased signals could at first glance be attributed 

to an unambiguous TERS signal. Further experiments were performed to estimate an 

enhancement factor of the TERS experiments. Enhancement factors (EF) were calculated 

for the G band using the approach described in Chapter 2. Briefly, the contrast was first 

determined using equation [Eq. 1] 

ܥ ൌ ூ೅ಶೃೄିூబ
ூబ

 [1] 

where I0 and ITERS represent the intensity of the Raman signal with the tip away and in 

contact with the sample, respectively. The EF can then be estimated using Equation [Eq. 

2]  

݂ܧ ൌ .ܥ ௗಽ
మ

ௗ೟೔೛
మ  [2] 

where dL=1 µm and dtip= 0.01µm are the diameters of laser spot and tip, respectively. 

Contrast factors calculated using C(G) = 18 with ITERS=3960 and I0=206, provides a 

crude approximation of the enhancement factor in the range of  ~20×104 for the G band. 

The overall enhancement factor is dependent on the relative illumination volume in the 

near-field and far-field regimes. This allows the variations in TERS contrast to be 

accounted for by considering the specific volumes determining the signal and thus can 

explain the increase in TERS contrast for localized features such as defects on two-

dimensional (2D) graphene.38  
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5.5 Conclusion  

In this study, we have shown that the sensitivity of TERS is well adapted to study 

graphene material. The spatial resolution provided by TERS allows one to probe 

specifically the edges of graphene flakes. Due to the large scattering cross section of 

graphene and in general carbon-containing materials, TERS was successfully used to 

probe few-layers graphene flakes deposited on gold nanoplates. The gap mode TERS 

associated with distinct polarizations of the excitation beam allowed one to discriminate 

the edges of an individual graphene flake composed of a few layers. The analysis of the 

Raman spectra and intensity ratio of the D/G Raman modes provides valuable 

information to determine edge type and orientation of the graphene flakes. TERS appears 

as a critical surface technique providing surface molecular information signal as well as 

high spatial resolution in the 10 nm range. Future work on functionalized graphene or 

decorated graphene with metallic particles will be conducted using this approach. 
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Chapter 6  

6 Tip-enhanced Raman Spectroscopy of DNA for β2- 
adrenergic receptor on Flat Gold Nanoplates Substrate 
Using Radially Polarized Excitations 

In the recent literature TERS has been used as a valuable technique to investigate 

a variety biomolecules such as DNA (Deoxyribonucleic acid) and RNA (Ribonucleic 

acid). TERS provides pristine molecular information from DNA through the detection of 

their vibrational finger prints together with nanoscale topography. In this chapter, we use 

gap-mode TERS with a radially polarized laser source to probe cDNA chains deposited 

onto Au ultra-flat nanoplates. More specifically, adrenergic signaling that controls the 

contraction of cardiac myocyte cells and the beating of the mammalian heart is initiated 

by ligand binding to β2-adrenergic receptors (β2ARs) contained in nanoscale multi-

protein complexes at the cellular membrane. Herein, we demonstrate that TERS appears 

as an ultrasensitive label-free technique for characterization of a plasmid free β2AR 

cDNA along with its embedded cDNA in plasmid with an optical resolution down to 8 

nm. This offers not only a tool to differentiate these two nanoscale specimens, but also to 

study the localization of the majority of nucleic acids present on each selected region on 

the cDNA strand. 

6.1 Introduction  
In medical and biological research it is often of importance to monitor the 

interaction of small molecules with DNA, such as cancer drugs intercalation the 

DNA chain.1 DNA sequencing as a valuable method requires visualization and 

separation techniques to recognize DNA fragments.2 More importantly, the 

determination of the exact nucleobase sequence of DNA is of substantial 



www.manaraa.com

116 

 

significance for research in the life sciences.3 The first sequencing methods were 

published in 1977 by Maxam and Gilbert,4  and Sanger et al.1  Since then, the 

sequencing technology has been further developed to be automated. Current 

advances provide a tendency towards single-molecule sequencing. This eventually 

results in the development of sequencing systems with expenditure of time and 

reasonable costs.5 

Powerful spectroscopic techniques including Raman scattering and IR 

absorption have been used for the label-free determination of DNA genomic 

investigations.6 Raman spectroscopy in particular provides a unique fingerprint of 

the molecules of interest and is therefore a highly appropriate tool to study small 

biomolecules such as DNA and RNA and other biological samples.7 Many 

spectroscopic techniques such as conventional Raman and infrared spectroscopies, 

nuclear magnetic resonance (NMR) and mass-spectroscopy can provide label-free 

structural characterization of a biomolecule such as a protein. However, those are 

lacking the spatial resolution capabilities and high sensitivity and they often 

require large sample quantities. In this context, surface-enhanced Raman 

spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) are two 

possible solutions that can enable extreme spatial resolution together with a higher 

surface sensitivity and specificity.8  

The use of TERS for DNA chains has been pioneered by Deckert et al.9,10 

The first investigations focused on crystals and monolayers of DNA components, 

such as adenine,11 cytosine and thymine,9 DNA base nanocrystals,9,11,12 and a study 

of the hydrogen bonding between adenine and thymine on a gold substrate.13 
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Recently, TERS spectra of a single-stranded (ss) calf thymus DNA 

macromolecules immobilized non-specifically on a mica substrate have been 

studied and revealed specific bands for each nucleobase.3 

Further field enhancement can be achieved by employing metal substrate 

onto which the DNA chain is deposited. The choice of gold thin and flat 

nanoplates was driven by several factors, such as (i) the transmission geometry of 

the setup that requires a small thickness of gold in order to optimize the laser 

intensity going through the gold substrate, (ii) a flat surface of gold that can be 

functionalized with biological molecules such as DNA molecules with minimum 

surface enhancement effects from the nanoplate itself, and (iii) the interest to 

benefit from the TERS “gap mode”, where DNA molecule is isolated between two 

metallic interfaces, i.e. the gold substrate and the metallic tip.3,14-17 

The human β2-adrenergic receptor gene is situated on the long arm of 

chromosome 5. This receptor is a member of the 7-transmembrane family of 

receptors and is composed of 413 amino acid residues.18 The study of β2-

adrenergic cDNA and receptors is of great interest since its agonists are used 

widely as bronchodilators and also in combination therapy with inhaled 

corticosteroids in the treatment of respiratory diseases, such as asthma and chronic 

obstructive pulmonary disease. Knowledge of the function, response, and 

regulation of the β2-receptor is also important to the clinician in interpreting patient 

response to both short- and long-acting β2-agonists. Similarly, an understanding of 

the mechanisms of receptor desensitization that might lead to tolerance and rescue 

therapy is useful.19 Adrenergic signaling that controls the contraction of cardiac 
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myocyte cells and the beating of the mammalian heart is also initiated by ligand 

binding to β2ARs contained in nanoscale multi-protein complexes at the cellular 

membrane. Considering the important roles of this specific family of receptor, 

basic information about the cDNA of these receptors offers wealthy information 

for further cell biological and physiological studies specifically in transfection 

process of immortalized cell lines using a cDNA. This information can also be 

useful for biophysical and surface chemistry applications such as cell micro 

patterning techniques for controlled biological studies on transfected cells.13  

In this work, we used a gap-mode TERS with a radially polarized laser 

source on Au ultra-flat nanoplates to study the functionalized β2AR cDNA strands 

on the nanoplates. The cDNA molecules are probed with a gold coated AFM tip in 

order to obtain largest electromagnetic field enhancement from the localized 

surface plasmon resonance (LSPR) generated between the gold tip and the 

functionalized flat gold surface. Herein, TERS is used for characterization of 

single chains of plasmid free β2AR cDNA along with its embedded cDNA in 

plasmid. This provides not only a tool to differentiate these two nanoscale 

specimens, but also to study the localization of the majority of nucleobases present 

on each selected region on a cDNA strand together with a high spatial resolution. 

6.2 Experimental Section 

6.2.1 Preparation of Gold Nanoplate Substrates Sample 

Preparation 

Synthesis of gold (111) nanoplates is reported in chapter 3 of this thesis. The 

resulting gold nanoplates used in this study were collected from a fresh batch, they 
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have typical thickness of 20 nm and base dimension of several microns.  The gold 

plates were subsequently released by sonication followed by drop-casted onto 

clean Quartz coverslips (120 mm thickness). AFM characterization of individual 

nanoplates shows roughness in the range of about 500 pm. 

6.2.2 cDNA Preparation and Purification 

β2 adrenergic receptor (β2AR)-Flag tagged plasmid was digested using 

HindIII and XbaI enzymes from the Fast Digest kit (Life Technologies). About 

5µg of DNA was incubated with both enzymes at 37˚C for 20 minutes. Control 

pcDNA1.1 plasmid without the β2AR-Flag insert was also digested using the same 

conditions. The digested fragments were subjected to agarose gel electrophoresis 

(0.7% w/v). The DNA was stained using RedSafe (FroggaBio) and the band 

relative to the β2AR-Flag was extracted under UV light. The expected size for the 

human β2AR DNA plus the Flag tag is about 1.1 Kb. The expected size for the 

pcDNA1.1 plasmid is 4.8 Kb. GeneRuler 1Kb plus DNA ladder was used as a 

reference. The β2AR-Flag band was purified using a gel extraction kit (Qiagen). 

Some of the purified DNA was subjected to agarose gel electrophoresis (0.7% w/v) 

and compared to the non-digested original plasmid. 

6.2.3 Deposition of cDNA Strands on Gold Nanoplates 

A coverslip was coated with 10-2 M of APTMS for 2 hour and it was rinsed 

with MilliQ water and dried under nitrogen gas. Few drops of as-prepared gold 

nanoplate solution was drop casted onto the coverslip for 30 min with subsequent 

rinse with MilliQ water to prevent the aggregation of non-attached gold 

nanoplates. A 10-15 µL of the cDNA solution was drop casted onto the as-
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prepared substrate of gold nanoplates for 5 min. The substrate was then rinsed few 

times with MilliQ water to remove any remaining of the solvent of cDNA.   

6.2.4 TERS Tip Preparation 

A deposition of 5 nm Ti with subsequent 30 nm of Au was conducted on a 

commercial silicon AFM tip (NCL50) for the preparation of a TERS tip. As-

prepared TERS tip was annealed for 30 min at 180°C to generate more uniform 

gold Island at the apex of the TERS tip. This step was added to the process to 

maintain the integrity of the TERS tip during AFM imaging and collecting TERS 

signals.    

6.2.5 TERS Setup 

The TERS setup used in this study is described in Chapter 2. The AFM tip 

used for these experiments was prepared from commercially available silicon 

cantilever (NCL, NANO WORLD Innovative Technologies, f = 190 kHz, k = 48 N 

m-1). These tips have been coated with a 5 nm of Titanium as an adhesion layer 

followed by 30 nm of gold using electron-beam evaporation. All Raman spectra 

were recorded in the 1000–3000 cm-1 spectral range. Laser excitation was either 

linearly polarized or was modified using a liquid crystal modulator with phase 

compensation (ARCoptix) to obtain radially polarized light. The size of the beam 

was adjusted to fill the entrance pupil of the objective.  
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6.3 Results and Discussion 

6.3.1 Nanoscale Topography and Fingerprint of Plasmid-free β2AR 
cDNA 

TERS experiments appears ideally suited to probe and possibly identify nanoscale 

structures as DNA and RNA.20  Prior to any TERS measurement, an AFM scan of the 

surface allows to distinguish  topographical features with nanoscale resolution such as the 

individual cDNA chains deposited onto the surface This provides the accurate 

topographical regions  to be selected and further probed with TERS. As mentioned 

earlier, ultra-smooth gold nanoplates with thicknesses of ~20 nm were used as substrate 

onto which cDNA strands were deposited. An AFM topographical image of a single 

hexagonal nanoplate deposited onto a quartz window is shown in Figure 6.1a.  

A random assortment of cDNA strands is also shown both on the gold nanoplate 

and also on the bare quartz in Figure 6.1b, c. Although the random assortment of cDNAs 

introduces a difficulty of finding them on the substrate, this localization can be used for 

two-fold purposes including i) conducting the TERS experiment on the cDNA strands 

located on the nanoplates and ii) using the cDNAs located on the quartz surface as a non-

TERS control  experiment. A single plasmid-free cDNA strand located onto the gold 

plate is presented in Figure 6.1d along with its topographical cross section shown in 

inset. Based upon this cross section, a 4 nm height with widths of 17 and 18 nm was 

observed for this specific plasmid-free cDNA. The measured width are convoluted with 

the AFM tip geometry and the height of the cDNA is the most accurate measurement to 

determine an average diameter which in good agreement with previous published studies 

obtained on similar objects. 21  
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Figure 6.1 AFM nanoscale topography of plasmid-free β2AR cDNA. a) AFM height image of single 

isolated Au nanoplate; b, c) AFM height and phase images of the selected region in (a), respectively; 

d) AFM height image showing a cDNA strand adsorbed on the Au nanoplate; and the cross section of 

DNA is shown in inset, presenting the nanoscale topography of the cDNA. 

Subsequent to the AFM scans, TERS is conducted to provide vibrational 

information of the selected regions indicated in Figure 6.2a. A preliminary TERS 

scanning of the sample was performed to evaluate the spatial resolution performance of 

the used tip. For this, the tip was scanned across the orthogonal direction with respect to 

the chain axis and the signal of an intense Raman mode was integrated as shown in 

Figure 6.2b, c for the modes at 1246 and 1345 cm-1, respectively.  
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Figure 6.2 Nanoscale TERS spatial resolution and chemical fingerprint of plasmid-free β2AR 

cDNA. (a) AFM topography image of a cDNA strand adsorbed on a gold nanoplate. (b,c) TERS 

intensity profiles derived from integration of TERS bands of 1246, and 1345 cm-1. (d-g) TERS 

fingerprint of different spots on the cDNA strand, respectively. 
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Table 6-1 TERS chemical assignment of plasmid-free β2AR cDNA3,9,22-29 Raman modes are named: 

ν (stretching), δ (bending), s (symmetric). Abbreviations: s (strong), m (medium), w (weak)  

1 2 3 4 
Assignment (plasmid-free 

cDNA) 
Ref 

665w  670w 672m G (ring breathing) [1, 2] 
- 687w 683w 699m C  C5C4-N3C4 [11] 

709w 709w  716w A (in-plane ring breathing) [1, 3] 
  730m 738w A Ring stretching [11] 

762w 742w   T Ring breathing [1,4,5] 
  773w 770m T Ring breathing [11] 
   782m C Ring breathing [10] 
  802w 806m Tris-HCl [3] 
  855w 851w G  N7C5-N1C2N3 [11] 

869w    Deoxyribose ring [1,6,10] 

  906w  
A/C/G ρ (NH2) NH2 Rocking; 

Deoxyribose 
[1,2,10] 

940w 936w   
A/C/G δ (NH2 )  NH2 Rocking + 

δ(C–H) + δ(ring) 
[1, 2, 4] 

974w    T  νs (C-C),  νs (C-O), ribose [1, 7] 
998w   997w T  Out-of-plane δ(NH2 ) wagging [1,4] 

- 1020m   C NH2 + C6-H [11] 

 1028m  1028w 
A νs(N-C)  N-Sugar Stretching 

A  NH2 + N9-H 
[1,2,11] 

1043w  1042w 1046w T Out-of-plane δ(CH3) wagging [4] 
1113m  1099w 1089w PO2 [1] 

  1122m 1124m 
C ν(C5C6–C6N1) + δ(C5H) in- 

plane 
A N3C2 + N9-H 

[4,11] 
 

 1131w   A ν(C8–N9), δ(N9–H, C8–H) [1,4] 
 1166w 1164m  A/G νs(C5-C6) C-C Stretching [1, 2] 
 1196m   C [1,8] 

1210s 1208s  1202s T νs(C-C) Ring-CH3 Stretching [1,2,7] 

  1216m  T  in-plane νs(C–CH3 ) [1,4] 

 
1246s 

 
1256s 

 
1246m 

 
1240s 

A δ(C8–H, N9–H), ν(N7–C8) 
C νs(C-C) Ring-CH3 Stretching 
G  νs(C8–N9)  C-N Stretching 

T  In-plane ν(ring) 

 
[1,2,4,5] 

1274s  1278s  
C ν(C–NH2 ) + in-plane ν(ring) 

T Ring + CH 
G C8N7-N1C6 + N7C5 

 
[1,4,11] 

 1296m  1291s C νs (C2-N3) C-N Stretching [1,2,9] 

  1314m  
A  ν (C2–N3, N1–C2, C5–C6, C5–

N7) 
G νs (C-N)  C-N Stretching (Im) 

[2,4] 

1324s   1336w A/G Ring mode [1,6] 
1346s 1345s 1353s  T N3H-C4=O [11] 

   1359m 
A/C/T/G νs (C-N) C-N Stretching 

(py) 
[1,2] 
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1390s 1403s  1398w 
T δ(NH) deformation δ(CH3) 

CH3 deformation 
[1,2,4] 

1413m    

A δ(C2–H, N9–H), ν(C8–N9, C4–
N9) 

C νs (C4-C5)  C-C Stretching 
T   δ(NH) + in-plane ν(ring) 

 
[1,2,4] 

  1433s 1423s C [11] 

1451s  1455w  
A C2H-N1C2 + N3C2 / G N1C2-

N1C6 
[11] 

 1468s 1473w 1467s 
A  νs (C=N) C=N Stretching (Py) 

T –N1C2 + C2N3 
[1,2,11] 

1499m    G νs (C=N) C=N Stretching (Im) [1,2] 

  1509s 1527s 
C δ (NH2) NH2 Deformation 

G C4C5-C4N9 
[1,2,11] 

1538s  1547w  T in-plane ring stretching [1,4] 
 1578s 1577s 1573m A/C/G/T Ring Stretching (Py) [1,2] 

1602s 1605s 1603w 1592m A/C/G δ(NH2) NH2 Deformation [1,2,4,11] 

1672w   1669w A βs(NH2) NH2 Scissoring [1,2] 
  1683m  G  C6=O + C5C6 [11] 

 

These peak at 1246 cm-1 represents several possible contributions such as δ(C8–H, N9–

H), ν(N7–C8), C νs(C-C) Ring-CH3 stretching, G νs (C8–N9) C-N stretching, T in-plane 

ν(ring), and the peak at 1345 cm-1 represents T N3H-C4=O.The analysis of the optical 

signal of these two modes provides valuable information on the optical resolution of the 

local measurement. The full width at half height in the curves shown in Figure 6.2b,c 

highlights a spatial resolution of roughly 15 nm. From this, several spectra were then 

collected on the cDNA chain and tentative assignment is reported in Table 6.1. As shown 

in Figure 6.2d-g, distinct spectra are recorded from distinct selected area (noted 1,2,3,4 

on Figure 6.2a) from the cDNA chain. Considering the fact that a cDNA strand is 

composed of just four nucleobases of Adenine (A), Cytosine (C), Guanine (G), and 

Thymine (T) with different sequences, comparable fingerprint are expected albeit with 

distinct intensities of the individual bands since it depends on the spatial distribution of 

the bases located under the tip. 
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6.3.2 Nanoscale Topography and Fingerprint of Embedded β2AR 
cDNA in plasmid 

The same study has been conducted onto embedded cDNA in plasmid and 

compared with plasmid-free cDNA. As shown in Figure 6.3, the topographical features 

of embedded cDNA in plasmid is comparable with plasmid-free cDNA as expected with 

a height of 4 nm and width of 18 nm. However the embedded cDNA shows a more 

anisotropic morphology as opposed to random coil-like topography of plasmid-free 

cDNA.  

 

Figure 6.3 AFM nanoscale topography of embedded β2AR cDNA in plasmid. a) AFM height image 

of single isolated Au nanoplate; (b) AFM phase image of the selected region in (a); (c) Cross section 

of cDNA, presenting the nanoscale topography of the cDNA. 
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The TERS spectra of different regions (Figure 6.4a) on an embedded cDNA in 

plasmid show quite different fingerprints in terms of intensities and location of peaks as 

shown in Figure 6.4. However, an improved spatial resolution up to 8 nm is observed on 

this sample (Figure 6.4 b,c) for major peaks of 1511 and 1278 cm-1. This is possibly 

obtained due to the higher density of nucleobases provided by the surrounding plasmid 

generating stronger signals with improved signal-to-noise ratio. The spatial resolutions 

for both with and without plasmid are obtained with 30-36 points with step size of 1 nm. 

The peak at 1511 cm-1 represents the C δ (NH2), and G C4C5-C4N9. The peak at 1278 cm-1 

represents C νs(C–NH2) + in-plane νs(ring), T Ring + CH, and G C8N7-N1C6 + N7C5.  The 

obtained spatial resolution is not sufficient enough to ascertain the exact sequence of 

cDNA based on the fingerprint; however, it is still possible to determine the presence of 

the major nucleobase(s) present at the selected local spot of measurement under the tip. 

The major peaks of the spectrum in each selected regions on cDNA strand are indicated 

by asterisks in both Figure 6.3 and 6.4. The determination of the major nucleobase at 

each spot using these peaks will be discussed in the following section. The full 

assignment of the embedded cDNA in plasmid has been shown in detail in Table 6.2. It 

also has been compared with the assignment of plasmid which represents less intense 

peaks due to the lower density of nucleobases present at the local region of measurement. 

This is in good agreement with the expected higher density of nucleobases in cDNA 

embedded in plasmid compared to the plasmid-free cDNA leading to stronger TERS 

signals and an improved spatial resolution. 
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Figure 6.4 Nanoscale TERS spatial resolution and chemical fingerprint of embedded β2AR cDNA 

in plasmid. a) AFM topography image of a cDNA strand adsorbed on a gold nanoplate. b,c) TERS 

intensity profiles derived from integration of TERS bands of 1511, and 1278 cm-1, respectively. d-g) 

TERS fingerprint of different spots on the cDNA strand. 
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Table 6-2 TERS chemical assignment of embedded β2AR cDNA in plasmid and pure plasmid3,9,22-29 

Raman modes are named : ν (stretching), δ (bending), s (symmetric). Abbreviations: s (strong), m 

(medium), w (weak), 

1 2 3 4 Plasmid Assignment (cDNA+plasmid) Ref 

729w 729w 716w   A (in-plane ring breathing) [1, 3] 
743w 741w 749w 772w  T Ring breathing [1,4,5] 
782w     T Ring breathing [11] 

816s 802w 813w 804w  
T N1C2+N1--H+C5C4+N1C6+N3C4 

TRIS-HCL 
[3,11] 

847w  844w   G N7C5-N1C2N3 [11] 
 877m 869w 884w  Deoxyribose ring [1, 6, 10] 

942s  937m   
A/C/G  δ (NH2 )  NH2 Rocking + δ(C–H) 

+ δ(ring) 
[1, 2, 4] 

960s  960m   C  δ(NH) out-of-plane wagging [4] 
  976w   T νs (C-C)  νs (C-O), and ribose [1, 7] 

980s  986w   C C5H [11] 

 
1031w 

 
1039w 

 
1026w 

  
A νs(N-C)  N-Sugar Stretching 

A ν(NH2) + N9-H 
C ν(Ring) + δ(C–H) in-plane 

 
[1,2,4,11] 

  1077w 1072w 1065m G [1,2] [1,2] 

1122m 1118s 1114m 1124m  
C ν(C5C6–C6N1) + δ(C5H) in-plane 

A N3C2 + N9-H 
[4.11] 

 1133m 1133m 1144m  A ν(C8–N9), δ(N9–H, C8–H) [1,4] 

1157s  1155m   G C8N7 + N9H-C4N3 [11] 

 1164s 1165m 1174w 1162w A/G νs(C5-C6) C-C Stretching [1, 2] 
  1191w 1195m  C [1,8] 
  1207w   T νs(C-C) Ring-CH3 Stretching [1,2,7] 

1216s  1219w  1217s T  in-plane νs(C–CH3 ) [1,4] 
1235s  1230s 1230w  C [11] 

 
1259w 

 
1252m 

 
1249w 

 
1264w 

 

A δ(C8–H, N9–H), ν(N7–C8) 
C νs(C-C) Ring-CH3 Stretching 
G  νs(C8–N9)  C-N Stretching 

T  In-plane ν(ring) 

 
[1,2,4,5] 

1275w 1278w 1286s   
C νs(C–NH2 ) + in-plane  νs(ring) 

T Ring + CH [11] 
G C8N7-N1C6 + N7C5 

 
[1,4,11] 

1296w 1296s  1303m  C νs (C2-N3) C-N Stretching [1,2,9] 

 1324w 1312s  1312w 
A  ν (C2–N3, N1–C2, C5–C6, C5–N7) 

G νs (C-N)  C-N Stretching (Im) 
[2,4] 

  1337s 1328w 1334w A/G Ring mode [1,6] 
1344s   1343w  T N3H-C4=O [11] 

    1353s G νs (C-N) C-N Stretching (py) [2] 
 1362s 1370w 1370w  A/C/T/G νs (C-N) C-N Stretching (py) [1,2] 

1383s   
1386w 

 G C2N3-C2 [11] 
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  1396s  1390w 
T δ(NH) deformation δ(CH3) CH3 

deformation 
[1,2,4] 

1427s  1432w 1417m 1410m C [11] 
 1443m  1443w 1439w T C5-Me [11] 

 
1461w 

    

A  νs(C=N) C=N Stretching (Py) 
C2H-N1C2 + N3C2 

G N1C2-N1C6 

 
[2,11] 

 1477w    
A  νs (C=N) C=N Stretching (Py) 

T –N1C2 + C2N3 
[1,2,11] 

1488s   1488w  C N1C6 + N3C4 [11] 

 1511s 1509s 1517s 1505s 
C δ (NH2) NH2 Deformation 

G C4C5-C4N9 
[1,2,11] 

1543w 1546s 1541s 1539w  
T in-plane ring stretching 
A Ring Stretching (Py) 

[1,2] 

1563m 1563s 1565s 1560s 1563m A/C/G/T Ring Stretching (Py) [1,2] 

1581w   1580sw 1581m 

A δ (NH2) NH2 Deformation 
C C4C5-C5C6 

T N3C4+N1C2+C6C5-N1C6 
G N3C4-C4C5 

 
[2,11] 

1596w 1596w 1591s 1609w  A/C/G δ(NH2) NH2 Deformation [1,2,4,11] 

 1641w 1632m 1637m 1621s C/G/T νs (C=O) , νs (C=C) [1,2,7] 

  1659w  1658s T C4=O + C5-C6 [11] 

1666w     A βs(NH2) NH2 Scissoring [1,2] 

 

6.3.3 TERS Sensitivity of the Nanoplates 

Figure 6.5 a-c shows TERS experiments with the tip located within the 

near-field of the sample and 100 nm above the surface of the sample (Far-field) for 

the three samples, namely plasmid-free cDNA, embedded cDNA in plasmid 

referred as cDNA, and pure plasmid. In the near-field spectra, a vibrational 

signature is collected for all the specimens, whereas in far-filed, no detectable 

peaks were observed. This supports the necessity of the tip to be located within the 

close surface of the sample to yield a reproducible signal-to-noise ratio. 

Noteworthy, the acquired spectra for plasmid-free cDNA and cDNA compared to 

plasmid are significantly stronger due to the lower density of nucleobases for 

plasmid. 
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As shown in Figure 6.5 d-f, the obtained signals of these three specimens are 

compared for both quartz and gold nanoplate substrates. As shown in Figure 6.5 d-f, the 

obtained signal of cDNA on quartz is quite similar to the quartz background signal without 

the presence of cDNA that suggests the lack of sensitivity of this approach When using the 

gold nanoplate in a gap-mode geometry, a clear spectrum of the cDNA t with strong signal-

to-noise ratio is observable highlighting the importance of the functioning mode of TERS 

for a selected sample  

 

Figure 6.5 TERS activity of the nanoplates for cDNA detection (a) TERS signal of plasmid-free 

cDNA on gold nanoplate in approach with tip (Near-field) and for retracted tip (Far-field); (b) TERS 

signal of embedded cDNA in plasmid on gold nanoplate in approach with tip (Near-field) and for 

retracted tip (Far-field); (c) TERS signal of plasmid on gold nanoplate in approach with tip (Near-

field) and for retracted tip (Far-field); TERS signal of plasmid-free cDNA (d), embedded cDNA in 

plasmid (e), and plasmid (f) on gold nanoplate and quartz substrate along with background signal of 

the substrate. 



www.manaraa.com

132 

 

6.3.4 Towards Nucleic Acid Localization on cDNA Strand Probed 
by TERS 

Based on the size of a nucleobase, a complete turn of a DNA is 3.4 nm ca. with 

0.34 nm ca. distance between each adjacent nucleobase.18 Considering the apex size of 

the tip used in this work to be 10 nm ca., ~25 nucleobases can be located under the tip 

during the signal acquisition. Due to this limitation, it might not be possible to ascertain 

the exact sequence of the cDNA at a specific location. However, one can estimate the 

prominent nucleobase(s) present in a specific sequence located under the tip. 

 For instance, in the case of the plasmid-free cDNA shown in Figure 6. 2 d-g, 

based on the dominant peaks indicated by asterisks, we can estimate the majority of the 

nucleobases present at those spots. As shown in Figure 6. 2d, spot 1, based on the 

selected peaks of 1210 (T), 1451 (A/G), and 1538 (T) cm-1, Thymine is present with a 

higher content compared to other nucleobases. In spot 2 shown in Figure 6.3e, based on 

the selected peaks at 1345 (T), 1403(T), and 1468(A/T) cm-1, the major density of 

nucleobases is also Thymine. For spot 3 shown in Figure 6.2f using major peaks of 

1433(C), 1509(C/G), and 1577(A/C/T/G) cm-1, the dominant nucleobase is Cytosine. In 

spot 4 shown in Figure 6.2g, based upon the peaks of 1240(G), 1423(C), and 1527(C/G) 

cm-1, the majority includes Cytosine and Guanine distributed equally. 

 The same analysis can be conducted on the embedded cDNA in plasmid as shown 

in Figure 6.4 d-g. In spot 1 shown in Figure 6.4d, the peaks at 1157(G), 1344(T), and 

1383(G) cm-1, the major nucleobase present would be Thymine. In spot 2 shown in 

Figure 6.4e, the represented major peaks at 1417 (C), 1517(C/G), and 1581(A/C/G/T) 

cm-1, the most dominant nucleobase would be Cytosine. In spot 3 of the cDNA shown in 
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Figure 6.4f, based on the most intense peaks of 1337 (A/G), 1511(C/G), and 1541(T/A) 

cm-1, the major nucleobases present would be Adenine and Guanine with equal 

probability. The final point of spot 4 represents the major peaks of 1362(A/C/G/T), 

1546(T/A), and 1596(A/C/G) cm-1, offers the Adenine as the most present nucleobase at 

this spot.     

6.3.5 Estimation of Enhancement Factor of TERS Measurements  

The estimated enhancement factor (EF) for these biosamples was determined 

using the approach developed in Chapter 2. Using diameters of the irradiated areas of 

dL≅500 nm for the far-field and dtip ≅	35 nm for the near-field, and contrast factors for 

the Raman band at 1511 cm-1,  C1511cm-1 = 309 (with ITERS = 4948.58 and I0 = 15.96), this 

provides a crude enhancement factor of 6.3×105. Although this is a rough estimate, this 

valueis comparable to typical TERS enhancement values reported in the literature.2,4  

6.4 Conclusion 

In this work, plasmid DNA such β2AR cDNA is investigated by TERS. First, 

AFM reveals morphological differences between plasmid-free cDNA compared to the 

embedded cDNA in plasmid. TERS is then employed to yield spatially resolved 

spectroscopic information of selected area of the DNA chains with an estimated 

resolution better than 10 nm in the best experiments. The collected TERS spectra are 

indicative of the distribution of the elementary bases (C, G, T, A) that can be estimated in 

selected region of the chains deposited onto a gold surface. This approach has great 

potential that can be further exploited in genomics studies. One question that may arise 

concerns the possibility to perform TERS in aqueous solution. Several work have been 
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published on the topic and demonstrate that TERS can technically be performed in 

physiological conditions.30 In such approaches, the selection of the force constant of the 

tip and aqueous media will be of importance but yet should not lead to a better spatial 

resolution that is strictly limited by the size of the tip. 
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Chapter 7  

7 Conclusions and Outlook  

In the present thesis, we have introduced the concept of plasmon and surface 

plasmon resonance effects and their applications to tip-enhanced Raman spectroscopy. 

Tip-enhanced Raman spectroscopy technique was investigated on both theoretical and 

experimental aspects as a useful technique to study a variety of nanostructures. A 

considerable part of this PhD work dealt with the optimization and technical 

development of the TERS setup with the goal to achieve a higher spatial resolution of 

the nanoscale features along with a better surface specificity (Chapter 2). For this, we 

have selected the gap-mode TERS which requires the development of ultra-flat 

substrates onto which selected nanomaterial (graphene sheets), molecules (monolayer), 

biomaterial (DNA chain) were deposited. The sample being sandwiched between two 

metallic interfaces, larger field enhancements and confinement are enabling higher 

sensitivity and better spatial resolution. The ideal nanoplates used in this studied were 

gold nanoplates that have ideal dimensions for TERS applications. The synthesis of Ag 

nanoplates was also reported in Chapter 3, but we were not successful at making plates 

that are large enough for TERS experiments. This work is presently pursued in the 

Lagugné-Labarthet’s group.  

Chapters 4 to 6 are derived from manuscripts that are either published (Chapters 

4, 5) or under preparation (Chapter 6). In particular we have investigated the polarization 

effect of the irradiation source by comparing the obtained spectra of a monolayer using 

Gaussian or Radial polarizations. We show remarkable effect that indicate that surface 

photochemical effect may occur yielding plasmon-mediated photoreduction of 4-NTP. 
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Such effect are strongly dependent on the tip-sample distance and vanish exponentially 

once the tip is brought far from the surface.1 

In Chapter 5, few-layer graphene sheets have been investigated by TERS. Spatial 

resolution was an important criterion in differentiating the edges types of graphene 

flakes. Due to the large scattering cross section of graphene and in general carbon-

containing materials, TERS was successfully used to probe few-layers graphene flakes 

deposited on gold nanoplates. Raman spectra and intensity ratio analysis of the D/G 

Raman modes provides valuable information to determine edge type and orientation of 

the graphene flakes. Sub-20 nm resolution was obtained upon these measurements but 

yet the reproducibility of these experiments was dependent on the tip activity.2 

Finally, TERS technique was used to investigate of ultra-flat gold nanoplates on 

a quartz substrate to be used for characterization of β2AR cDNA (Chapter 6). Owing to 

high topographical and spatial resolution accessible by TERS, this approach provides an 

ultra-sensitive promising tool for investigation of small bio-structures such as DNA and 

RNA. In addition, the optical resolution chemical information obtained clearly reveals 

details in the range of 8-20 nm, enabling the possibility to probe nanoscale biomolecules 

using a label-free and non-invasive method. 

Future work and experimental developments can be done to push further the limit 

of detection  down to the single molecule detection.3  In this context, ultrahigh vacuum 

TERS (UHV-TERS) seems to be the next level of high resolution spectroscopy with a 

resolution allowing one to collect the Raman spectrum of a single molecule deposited 

onto a surface. The UHV conditions also prevent any oxidation processes of the metallic 
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tip, substrate or sample of interest and should also limit the presence of an interfacial 

layer of water. Actually with this combination, TERS studies on atomically clean 

surfaces are possible when carried out in ultrahigh vacuum.4-7 In 2008, the first TERS 

measurement under UHV condition was reported by J. Steidtner and B. Pettinger.8,9 

Recently, spatial resolution of ∼1 nm has been reported in UHV4 and ∼2 nm in 

ambient.10 In a recent work, Wolf et al.7  used UHV-TERS to study of graphene 

nanoribbons on Au(111) and observed significant blinking of the TERS signal of both the 

D- and G-band.7 Similar methodology was performed recently by R.Van Duyne’s 

research group11 using picosecond (ps) UHV-TERS technique in an effort to acquire 

molecular resolution information. In this research they demonstrated the benefits of 

coupling of picosecond-pulsed irradiation with a UHV-TERS instrument as depicted in 

Figure 7.1.  

 

Figure 7.1 Experimental setup of ps UHV-TERS. Laser source (532 nm) irradiation is coupled to 

the UHV instrument via an optical Fiber. The backscattered light from the sample gets collected and 

then enters the spectrometer. The image is adapted from reference 11 with permission from 

American Chemical Society.11 
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Rhodamine 6G (R6G) was selected as the analyte due to its large resonant Raman 

cross section and compatibility with in situ-sublimation and also to benefit from 

electronic resonance effects using an excitation source that matches the absorption of the 

dye. 

The development of UHV-TERS is still in progress and with further technical 

improvements in future, the ultrahigh sensitivity and spatial resolution of UHV-TERS 

method can provide information about some phenomena such as the catalysis processes, 

surface functionalization and organization.12 Nevertheless, such setups are extremely 

complex to maintain and costly to acquire limiting their use to a few specialized research 

groups. 

In conclusion, the use of  metallic nanosized objects and more specifically the 

tailoring of their plasmonic properties reveals to be a fabulous source of improvements of 

spectroscopic techniques such as Raman spectroscopy but can also be valued for a wealth 

of other processes such as infrared spectroscopy,13 fluorescence,14  photo luminescence,15 

and nonlinear optical processes.16 The local field-enhancement significantly improves 

sensitivities and spatial resolution well beyond the conventional limits of a classical 

optical measurement. 

Specific to TERS, the reproducible fabrication of an active tip is a current 

challenge. The tip has to be stable in time, robust in use and with associated surface 

plasmon resonance that are tuned to a given excitation source for an efficient activity. 

Furthermore the localize surface plasmon must be excited with the proper polarization to 

yield larger enhancements.17 
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